gms | German Medical Science

GMS Hygiene and Infection Control

Deutsche Gesellschaft für Krankenhaushygiene (DGKH)

ISSN 2196-5226

Infection prevention requirements for the medical care of immunosuppressed patients: recommendations of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute

Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten: Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut

Guideline

GMS Hyg Infect Control 2022;17:Doc07

doi: 10.3205/dgkh000410, urn:nbn:de:0183-dgkh0004105

Published: April 13, 2022

© 2022 Commission for Hospital Hygiene and Infection Prevention (KRINKO).
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Abstract

In Germany, guidelines for hygiene in hospitals are given in form of recommendations by the Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, “KRINKO”). The KRINKO and its voluntary work are legitimized by the mandate according to § 23 of the Infection Protection Act (Infektionsschutzgesetz, “IfSG”).

The original German version of this document was published in February 2021 and has now been made available to the international professional public in English. The guideline provides recommendations on infection prevention and control for immunocompromised individuals in health care facilities. This recommendation addresses not only measures related to direct medical care of immunocompromised patients, but also management aspects such as surveillance, screening, antibiotic stewardship, and technical/structural aspects such as patient rooms, air quality, and special measures during renovations.

Keywords: immunocompromised, iInfection prevention and control, guideline, health care

Zusammenfassung

In Deutschland werden die Anforderungen an die Hygiene im Gesundheitswesen in Form von Empfehlungen von der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) veröffentlicht. Die KRINKO und ihre ehrenamtliche Arbeit legitimieren sich aus dem Auftrag nach §23 des Infektionsschutzgesetzes (IfSG).

Die deutsche Originalfassung dieses Dokuments wurde im Februar 2021 veröffentlicht und nun auf Englisch der internationalen Fachöffentlichkeit zur Verfügung gestellt. Das Dokument enthält Empfehlungen zur Infektionsprävention und -kontrolle bei der Versorgung von immungeschwächten Personen in Gesundheitseinrichtungen. Diese Empfehlung befasst sich nicht nur mit Maßnahmen, die die direkte medizinische Versorgung immungeschwächter Patienten betreffen, sondern auch mit Managementaspekten z.B. Überwachung, Screening, Antibiotic Stewardship, sowie mit technisch/strukturellen Aspekten z.B. Patientenzimmer, Luftqualität und besonderen Maßnahmen bei Renovierungsarbeiten.

Schlüsselwörter: Immunsupprierte, Empfehlung, Krankenhaushygiene, Infektionsprävention


Legal notice

This translation is intended solely as a convenience to the non-German-reading public. Any discrepancies or differences that may arise in translation of the official German version of the recommendation of the Commission for Hospital Hygiene “Anforderungen an die Infektions-prävention bei der medizinischen Versorgung von immunsupprimierten Patienten” (Bundesgesundheitsbl. 2021;64(2):232–64, https://doi.org/10.1007/s00103-020-03265-x) are not binding and have no legal effect.

Legal notice in German

Rechtlicher Hinweis

Rechtlich bindend ist die deutsche Originalfassung dieser Empfehlung „Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten“ (Bundesgesundheitsbl 2021; 64:232–264, https://doi.org/10.1007/s00103-020-03265-x). Die englische Fassung dient der Information der internationalen Fachöffentlichkeit.


List of abbreviations

  • ABS: Antibiotic stewardship
  • ADV: Adenovirus
  • AFS: Antifungal stewardship
  • AML: Acute myeloid leukaemia
  • ART: Commission on Anti-infectives, Resistance and Therapy
  • AWMF: Association of Scientific Medical Societies in Germany
  • BMT: Bone marrow transplantation
  • BSI: Bloodstream infection (infection with evidence of a pathogen in the blood culture, manifesting clinically as bacteraemia, fungaemia or sepsis) [1]
  • CDI: Clostridioides difficile infection
  • CHX: Chlorhexidine
  • CMV: Cytomegalovirus
  • CoNS: Coagulase-negative staphylococci
  • CVAD: Central venous access device (an implanted central venous catheter providing long-term access, such as a Broviac or Hickman catheter or port)
  • CVC: Central venous catheter
  • Device: Medical device, the use of which is associated with an increased risk of infection (e.g. intravascular catheter, gastric tube, percutaneous endoscopic gastrostomy, tracheostomy, urethral catheter, bone implant materials, etc.)
  • DIN: German Institute for Standardization
  • ESBL: Extended-spectrum beta-lactamase
  • FFP: Filtering face piece; respirator mask
  • GVHD: Graft-versus-host disease
  • HACCP: Hazard analysis and critical control points
  • HD: Hygienic hand disinfection
  • HEPA filter: High-efficiency particulate air/arrestance filter
  • HHV: Human herpes virus
  • HMPV: Human metapneumovirus
  • HS dispenser: Hand sanitiser dispenser
  • HSV: Herpes simplex virus
  • IfSG: Infektionsschutzgesetz, German Infection Protection Act
  • KISS: German Nosocomial Infection Surveillance System
  • KRINKO: Commission for Hospital Hygiene and Infection Prevention at the Robert Koch Institute
  • MRGN: Multidrug-resistant Gram-negative pathogens
  • MRP: Multidrug-resistant pathogens
  • MRSA: Methicillin (oxacillin)-resistant S. aureus
  • NI: Nosocomial infections
  • NRC: National reference centre
  • NTM: Nontuberculous mycobacteria
  • PBSCT: Peripheral blood stem cell transplantation
  • PCR: Polymerase chain reaction
  • PJP: Pneumocystis jirovecii pneumonia
  • RKI: Robert Koch Institute
  • RSV: Respiratory syncytial virus
  • SCT: Stem cell transplantation (usually stem cells separated from peripheral blood)
  • SM: Surgical mask
  • STIKO: German Standing Committee on Vaccination
  • TrinkwV: German Drinking Water Ordinance
  • VDI: Association of German Engineers
  • VRE: Vancomycin-resistant enterococci
  • VZV: Varicella zoster virus
  • WHO: World Health Organization

Glossary of terms (as used in this document)

Allogeneic stem cell transplantation

Transplantation of blood stem cells from another person, either a family member or an unrelated donor.

Autologous stem cell transplantation

Transplantation of the patient’s own blood stem cells, which are harvested from peripheral blood or bone marrow and processed, then frozen and transfused back into the patient at a later date.

Bacteraemia

The presence of viable bacteria in blood; evidence of infectious bacteria in a properly collected blood culture.

Basic hygiene measures

Measures taken in contact with all patients (or by patients themselves) to prevent transmission of infectious agents to patients and staff and to reduce the risk of nosocomial spread of pathogens. These include, in particular, hygienic hand disinfection (HD) and situational use of specific barrier measures:

  • Disposable gloves if contamination of the hands with blood, respiratory secretions or other patient excretions is a possibility
  • Protective clothing (patient-specific aprons or gowns) for tasks involving considerable contamination (e.g. caring for a patient with diarrhoea or vomiting)
  • A respirator (e.g. FFP2 or FFP3) in the presence of patients with infections transmitted by aerosols
  • A surgical mask (SM) for close contact with a patient who has an infection transmitted by droplets.

Other basic hygiene measures include the disinfection of contaminated surfaces and objects and the correct preparation of medical devices. Further information can be found in the KRINKO recommendations entitled “Infection Prevention in the Care and Treatment of Patients with Communicable Diseases [2]”.

Bloodstream infection

Evidence of an infectious agent in the properly collected blood culture of a patient with signs of infection, such as fever, and any other clinical or laboratory manifestations of systemic inflammatory response syndrome. The use of this term does not depend on the severity of the clinical picture.

Facultative pathogens

Pathogens that require specific conditions to cause infectious diseases, such as access to parts of the body that are normally sterile, e.g. via catheter systems or foreign bodies, and can also cause infectious diseases in people who are not immunosuppressed.

Graft-versus-host disease

Cells from the donor’s immune system recognise the recipient’s own antigens as foreign and cause an immune reaction that harms the recipient. The skin, mucous membranes and liver of the recipient (and the lungs in chronic GVHD) are most often affected. Intensification of treatment with immunosuppressants may be necessary to control GVHD, which has been assigned four grades of severity by the WHO.

Severe graft-versus-host disease

In cases of severe GVHD, immunosuppression must be intensified, which substantially increases the risk of serious infections [3]. GVHD that meets one of the clinical international consensus criteria for grade 3 or 4 is considered to be severe [4].

Induction therapy

In acute leukaemia, malignant cells crowd out healthy cells in the bone marrow, which can lead to infections and a tendency to bleed. In this situation, the primary goal of treatment is to destroy the diseased cells, enabling the displaced healthy cells to recover. To achieve this, several cycles of intensive chemotherapy are usually necessary. Chemotherapy administered to induce remission is called induction therapy, whereas chemotherapy given in remission is usually called consolidation therapy. Patients undergoing solid organ transplantation also require more intensive immunosuppression (e.g. with antithymocyte globulin or basiliximab) at the time of the transplant. This treatment is also called induction therapy and very important in terms of the level of immunosuppression in the individual patient.

Isolation room

A room that can be used as a single room with ensuite sanitary facilities (shower and toilet), HS dispensers and an entrance area large enough for gowns, gloves and SM to be put on and disposed of before leaving the room [2].

Neutropenia

A neutrophil count in peripheral blood of <0.5x109/L or a white blood cell count that is <1x109/L and falling if a differential blood count is not available. Severe (prolonged) neutropenia: neutropenia lasting longer than 10 days.

Neutropenic diet

Explicitly avoiding any foods that can cause infections in immunosuppressed patients through contamination with and transmission of facultative or opportunistic microorganisms [5], [6], [7].

Obligate pathogens

Pathogens which, in the absence of specific immunity, can cause infectious diseases in healthy people.

Opportunistic pathogens

Pathogens which usually only cause infectious diseases if the immune system is compromised.

Sepsis

Life-threatening organ dysfunction due to an inadequate host response to infections [1], [8], [9], [10].

Severe immunosuppression

Severe immunosuppression equivalent or comparable to risk groups 2 and 3 (see Table 1 [Tab. 1]).

Authors’ note on the English translation of some specific professional desig- nations in this document

This document uses professional terms for the hygiene team that are established in the German healthcare system. Since there may be no direct equivalents for these professional designations in other countries, we would like to explain the terms used in this document in more detail:

  • Infection control specialist (“Krankenhaushygieniker”): In Germany, infection prevention and control is a certified medical specialty (“Facharzt für Krankenhaushygiene und Umweltmedizin”). As in other medical specialties, a 60-month postgraduate training must be completed after medical school to become an IPC specialist. This training includes 12 months spent in clinical wards (i.e., internal medicine, surgery, pediatrics) and at least 48 months in a certified and authorized IPC department [11].
  • An IPC link doctor (“hygienebeauftragter Arzt”) is a physician working in the respective area who supports the implementation of the IPC measures in his or her area.
  • An IPC nurse (“Hygienefachkraft”) is a nurse who has additional training in infection prevention and control.

1. Introduction and objectives

1.1. Background

Congenital and acquired forms of immunodeficiency are independent risk factors for potentially life-threatening nosocomial infections (NI), which can be caused by a multitude of pathogens (some opportunistic) [12]. The term immunosuppression is understood to mean the iatrogenic suppression of certain components of the immune system. The resulting immunodeficiency is either necessary for medical reasons (e.g. in certain autoimmune diseases or to prevent a rejection reaction after stem cell or organ transplantation) or a side effect of the medical treatment (e.g. cytostatic chemotherapy, radiotherapy or the use of biologicals in antineoplastic therapy). In this document, the term immunosuppression will also be used for patients (all references to professions or groups in this document include all genders) who are immunocompromised because of a congenital or acquired underlying disease and not medication [13].

Patients to whom these recommendations relate may be among those at risk of a complicated SARS-CoV-2 infection. Management of the pandemic caused by the new SARS-CoV-2 coronavirus is not covered by these recommendations. Please refer to relevant documents issued by the Robert Koch Institute (http://www.rki.de/covid-19) and competent medical professional associations, which are updated regularly, and to local pandemic plans.

1.2. Classification of risk groups

In its 2010 recommendations entitled “Hygiene Requirements for the Medical Care of Immunosuppressed Patients”, the Commission for Hospital Hygiene and Infection Prevention (KRINKO) defined three risk groups of immunosuppressed patients [14]. Infection prevention measures are based on the relevant risk group. This classification has been retained in this updated version (Table 1 [Tab. 1]).

Further details of risk groups, infectious agents and transmission pathways can be found in Tab. 3 to Tab. 6 in Attachment 1 [Attach. 1]. Tab. 3 contains information about infections that are occurring with greater frequency because of the increasing use of certain biologicals in recent years. As there are many possible patterns of findings, this table is inevitably incomplete. For instance, severe immunodeficiency can consist of immune cells which are numerically normal but dysfunctional. Important groups of patients with severe immunodeficiency include patients with certain congenital immunodeficiency syndromes, such as septic granulomatosis, and patients on immunosuppressive therapy (certain biologicals, long-term treatment with high doses of systemic corticosteroids or lifelong immunosuppression after organ transplantation). Acute treatment of rejection reactions after organ transplantation can be comparable with GVHD in terms of the resulting immunosuppression [15]. Tab. 4 provides a guide to the spectrum of pathogens causing invasive infections in patients with weakened immune systems.

The risk groups of immunosuppressed patients defined here are a dynamic (and to some extent pragmatic) guide introduced primarily for adaptation of the required hygiene measures. This allocation concept suggested by the KRINKO must not be confused with other clinical risk scores or stages of disease.

The specific situation of individual patients and the corresponding risk of infection can change in the course of treatment. Individual patients can move between risk groups depending on their clinical treatment situation (e.g. induction vs. consolidation therapy, recurrence of leukaemia, preparation for and execution of stem cell transplantation after conventional treatment). This means that it may be necessary for doctors to amend the risk group in their risk analysis.

A “medical risk analysis” is a critical review of the patients’ current situation (from an infection risk and prevention perspective) by the doctors treating them. It requires close on-site contact with the infection control specialist, the IPC link doctor and/or IPC nurse in hygiene so that more complex issues can be discussed at any time (please also refer to the KRINKO recommendations on personnel and organisational requirements for the prevention of nosocomial infections [16]).

As the attending physicians know from experience how long the neutropenia associated with certain underlying diseases and therapeutic interventions is likely to last, most patients can be assigned to the appropriate risk group in advance. Patients with solid tumours face additional risks because they usually require tumor surgery [17], [18], [19], [20], [21].

After allogeneic transplantation, the severity of graft-versus-host disease (GVHD) is also particularly crucial to the intensity of immunosuppressive therapy and corresponding risk group assignment. Patients with severe GVHD of the skin or gastrointestinal tract are at particularly high risk of severe exogenous and endogenous infections.

1.3. Prevention aims of these recommendations

The overall aim of these updated recommendations is to reduce the incidence of NI in immunosuppressed patients, if possible to unavoidable events [22], thereby increasing patient safety, improving their quality of life [23] and reducing the morbidity and mortality associated with NI [12], [24], [25]. It is also to counteract the selection and transmission of pathogens with specific and multidrug resistance, and NI caused by Clostridioides (C.) difficile (CDI) or viral pathogens, by taking appropriate measures.

1.4. Target groups of these recommendations

These recommendations are aimed at all professionals who are directly or indirectly involved in the medical care of immunosuppressed patients, particularly doctors and the relevant medical professional associations, nursing staff, hygiene professionals (infection control specialists, IPC link doctors, IPC nurses, physiotherapists, technical staff, public health services, hospital administrative staff, doctors working for health insurance companies, medical students and trainees [e.g. in healthcare and nursing]). They are also intended to provide a basic framework for infection prevention when drawing up plans for new wards and specialist outpatient clinics in which severely immunosuppressed patients will be treated.

1.5. What is new in these recommendations?

These recommendations replace the 2010 recommendations entitled “Hygiene Requirements for the Medical Care of Immunosuppressed Patients”. To make them easier to follow, this revised version has a new structure. Instead of a detailed introductory analysis of the various causes and manifestations of immunodeficiency (or immunosuppression), reference is made to relevant specialist literature [12], [26], [27], [28], [29], [30], [31],[32]. The KRINKO assumes that those responsible for the medical treatment of immunosuppressed patients have a sufficient knowledge in line with their training. Some recommendations are preceded by specific background information, which is intentionally brief so the document is easier to read.

This revised and updated document focuses on specific recommendations for NI prevention in healthcare facilities treating immunosuppressed patients [30]. Section 5 of the 2010 recommendations, which contains guidance on infection prevention during periods of outpatient treatment, is to be transferred to the information booklet first produced in 2010 by the German Association of Self-Help Organisations for Patients with Leukaemia and internet-based resources for wider distribution and use [33].

The KRINKO evidence categories from 2010 [34] are used in these recommendations (Table 2 [Tab. 2]). As there is no scientific evidence from controlled studies for some of the recommendations, not every recommendation is assigned a category.

There are of course many direct references to the latest version of other KRINKO recommendations, which are listed in the references section. The primary purpose of these recommendations is to add to existing KRINKO recommendations by highlighting specific aspects of the medical treatment of this particular patient population. However, very important measures that also feature in other KRINKO recommendations will be repeated in places.


2. Recommendations

2.1. Prevention

2.1.1. Training for all staff

The KRINKO recommends:

  • Regular training in nosocomial infection prevention and control in immunosuppressed patients for all members of the treatment team (no cat.). This involves the transfer of knowledge and specific practical skills in accordance with locally agreed standards.
  • That critical activities, such as the care of intravascular catheters and other devices, only be performed independently by adequately trained staff [35] (cat. IV).
  • Combining training with practical exercises in small groups using examples from everyday clinical practice and involving hygiene professionals (no cat.).
2.1.2. Training for patients and their relatives

Many patients and those accompanying them want to be actively involved in infection prevention through general information, specific advice and practical guidance [36], [37], [38], [39]. Severely immunosuppressed patients are often admitted to hospital, in some cases for long periods of time, or attend specialist outpatient clinics or day hospitals for their treatment. In such cases, there is a continuity of interaction with medical staff, which can be used to share basic hygiene strategies and repeatedly emphasise their importance. For example, without continuous active guidance, hygienic hand disinfection (HD) is performed too rarely by patients and visitors, but together with hand sanitiser dispensers (HS dispensers) (e.g. at the entrance to the hospital, ward or specialist outpatient clinic), it can increase the HD rate of patients and visitors [40], [41], [42], [43]. Experience shows that nursing staff are tremendously important in providing patients and their relatives with information and guidance about basic hygiene measures because of the intensive contact they have with them. Patients who are consistently asked to take these measures by medical staff are more likely to tell them about gaps in prevention (e.g. staff HD or three-way valve disinfection before manipulation of a central venous catheter) [42], [44], [45]. Obstacles arising from language barriers or a lack of health knowledge can be anticipated and overcome by involving patients and providing practical guidance. A professional translation should be provided if possible. Precise and clear explanations and rules should be communicated in simple terms. Patients who already have neutropenia or are expected to develop it in the course of their treatment should be told what neutropenia is and why it increases the risk of infections. Patients must know how fever is defined, how to take their temperature and exactly what to do if they develop a fever. Specific information and rules (on all aspects of this section) are essential for appropriate behaviour during periods of outpatient treatment [46], [47], [48]. Contradictory statements from different members of the treatment team should be avoided. Any existing differences of opinion within the team should not be shared with the patient; speak with one voice where possible [30], [49], [50].

The KRINKO recommends:

  • Actively involving patients (and relatives, visitors and companions) as partners in infection prevention and control as much as possible (no cat.). This requires well-planned and sustained efforts by the entire treatment team [27], [50].
  • Emphasising the importance of the hands in the transmission of pathogens on first contact after diagnosis [51], [52], [53] (cat. IB).
  • Explaining and demonstrating the most important indications and correct procedure for HD (and hand washing at home) [54], [55], [56], [57] (see KRINKO recommendations entitled “Hand Hygiene in Healthcare Facilities” [54], [55] [no cat.]).
  • At a later stage of treatment, specifically addressing more complex aspects of infection prevention, e.g. strategies for preventing food-related infections [58], [59], [60] or, if appropriate, infections transmitted through contact with pets or farm animals (case history) [61], [62], [63], and which vaccinations are recommended for relatives or close contacts [64] (cat. II).
  • Where they are used: explaining why certain measures that go beyond basic hygiene [e.g. wearing a surgical mask (SM), contact isolation, protective isolation] are required and what they consist of (see sections 2.1.9 and 2.1.13) (no cat.). Experience shows that this avoids conflict and improves adherence.

If patients or the relatives caring for them are involved in any aspect of their treatment, the KRINKO recommends:

  • Training them to the same standard as everyone else in the department, as happens with new members of the treatment team (no cat.).
  • Documenting this training carefully (no cat.).

For example, this can include central venous catheter (implanted for long-term access) maintenance care during periods of outpatient treatment [65], [66], [67], [68], [69]. Patients (or their relatives) should be trained to carry out critical aspects of catheter care (such as dressing changes or flushing the catheter) independently [70], [71], [72].

These standards must never overwhelm patients or their relatives. Such training is not possible or wise for all patients (families).

To support the provision of information and active patient involvement, the KRINKO recommends:

  • As a team (with hygiene professionals), discussing the most important issues and deciding exactly how to communicate them (no cat.).
  • For example, providing brochures or simple handouts on basic hygiene and other subjects, in the patient’s language where possible, and using pictograms or visual aids [43] (no cat.).
  • Involving patient representatives in the development of new information materials where possible (no cat.).
  • Referring to reliable (for example, provided or reviewed by medical professional associations) online resources for patients [33], [73], [74], [75] (no cat.).
2.1.3. Visitor rule requirements

Even with immunosuppressed patients in an inpatient setting, it is in their interests to actively encourage and facilitate social contact with relatives and visitors in order to counteract social isolation, depression and a tendency to withdraw. However, visitors must not have a communicable infectious disease (or be in the incubation period after known exposure to such a disease) and should always take basic hygiene measures when in contact with patients. The more open the communication between the treatment team, patients and relatives about this, the more likely patients and relatives (e.g. parents) are to ask in advance whether or not a visit is appropriate in terms of a possible infection. Basic clinical screening of all children for signs of infection before they enter the ward can be included in visitor rules but has not been shown to help prevent infection. If relatives and patients have understood how to behave and learnt to ask the treatment team any outstanding questions, such screening is not absolutely necessary outside risk groups 2 and 3 (see Table 1 [Tab. 1]). Infants who have received a live rotavirus vaccine should not have close contact with severely immunosuppressed patients for the following two weeks (if contact is unavoidable: disposable gloves during and HD after nappy changes).

The KRINKO recommends:

  • Establishing binding rules for visitors, which can be consulted immediately in individual cases, in consultation with the most senior doctor and nurse in the ward or department (no cat.).
  • Instructing visitors in HD and, if necessary, other aspects of basic hygiene and infection prevention (see KRINKO recommendations entitled “Hand Hygiene in Healthcare Facilities” [54], [55]) (no cat.).
  • Excluding visitors who have a potentially transmissible infection (cardinal symptoms include fever, heavy cold, cough, conjunctivitis, unexplained rash, diarrhoea or vomiting) (no cat.).
  • That visitors with signs of a mild respiratory infection, such as rhinitis, or oral herpes wear a SM (in addition to strict HD) [2], [76] (cat. II).
  • Excluding visitors with only mild symptoms of a respiratory infection from visiting patients in risk groups 2 and 3 (see Table 1 [Tab. 1]) (no cat.).
  • Also instructing children in HD in a way that is appropriate to their age and stage of development. Direct supervision and manual assistance are usually required until they reach school age (no cat.).

For the following measures, there is no scientific evidence that they help to prevent infection. Therefore, the KRINKO does not recommend them (cat. III) in risk group 3 [77] (except in appropriate treatment situations or for specific infection epidemiology reasons in the general population)

  • Gowns for all visitors
  • A SM for all visitors (exception: see 2.1.5.2; current prevention measures for the COVID-19 pandemic are of course unaffected by this)
  • Disposable gloves for all visitors [78].
2.1.4. Immunoprophylaxis

Active and passive immunisation of immunosuppressed patients is the subject of current recommendations by the German Standing Committee on Vaccination (STIKO) at the Robert Koch Institute, the body mandated by the IfSG to provide such recommendations [64], [79], [80], and medical professional associations [81]. Employers in the health service are entitled to know the vaccination status of their employees and use this information “to make decisions about a new employment relationship or the nature of employment”. As some easily transmitted, vaccine-preventable illnesses can be life-threatening, especially in immunosuppressed or immunocompromised patients (e.g. measles, chickenpox, influenza), the most senior doctor and nurse, infection control specialist and the occupational medical service should work intensively together to ensure that, where possible, all non-immune members of the treatment team get vaccinated against these illnesses [82], [83], [84]. This is an important task for the hospital administration [85]. Irrespective of this, please read section 20 (8) of the IfSG (duty to demonstrate immunity to measles), which came into effect on 01.03.2020 [84].

The KRINKO recommends:

  • That treating physicians play an active role in ensuring that patients (depending on their current treatment situation and degree of immunosuppression) and their relatives (close contacts) are fully vaccinated according to the appropiate STIKO recommendations (no cat.).
  • That medical staff (all types) who work in close contact with immunosuppressed patients are fully vaccinated, particularly to prevent nosocomial infections (including the annual influenza vaccine) [86], [87], [88], [89], [90], [91] (cat. IB).

If staff who have not been vaccinated against influenza have close patient contact (contact and droplet infection), the hygiene committee should review additional measures to minimise the risk of transmission (e.g. wearing a SM in addition to HD and other basic hygiene measures) (no cat.).

2.1.5. Basic hygiene measures
2.1.5.1 Hand hygiene

Hygienic hand disinfection (HD) is the most important measure in the prevention of NI. Without appropriate HD, staff hands have been shown to be contaminated with pathogenic microorganisms [92].

Adherence to HD is often relatively high on wards containing immunosuppressed patients [93], [94], [95]. However, even on these wards, staff disinfect their hands more often after patient contact than before (e.g. before an aseptic activity [95]). In a study of a stem cell transplantation unit, authorisation to disinfect gloved hands increased adherence, particularly before aseptic activities. The incidence density of severe infections (in this case: bloodstream infections [healthcare-associated bloodstream infection; HABSI] and pneumonia [hospital-acquired pneumonia; HAP]) decreased (from 6.0 to 2.5/1,000 patient days, not statistically significant), and the transmission rate of multidrug-resistant pathogens (MRP) (MRSA, ESBL-producing Gram-negative pathogens, VRE) was unaffected [96]. In order to maintain a high standard, participation in the “Aktion Saubere Hände” Clean Hands Campaign (or local implementation of a comparable concept) seems eminently reasonable [56]. HS dispensers should also be installed in the entrances to the relevant wards and outpatient clinics so that the first HD can take place on arrival [40], [41], [42].

The KRINKO recommends:

  • Regular careful instruction, training and supervision of the entire treatment team in following the KRINKO recommendations on hand hygiene (cat. IA/IB, see KRINKO recommendations entitled “Hand Hygiene in Healthcare Facilities” [54], [55]).
  • Installing an adequate number of patient-accessible HS dispensers in wards and specialist outpatient clinics for immunosuppressed patients (cat. IA/IB, see KRINKO recommendations entitled “Hand Hygiene in Healthcare Facilities” [54], [55]).
2.1.5.2 Patient-specific protective clothing and scrubs

The KRINKO recommends:

  • In order to contain certain transmissible infectious agents, wearing suitable, exclusively patient-specific protective clothing (e.g. aprons, gowns) for activities in which close patient contact could contaminate work clothing with blood, faeces, urine or secretions, and in general when caring for patients with diarrhoea, vomiting or extensive wounds (in this context, specific reference is made to the KRINKO recommendations entitled “Infection Prevention in the Care and Treatment of Patients with Communicable Diseases” [2], [97]) (no cat.).
  • That medical staff providing care wear work clothes (not their private clothes) that have been properly prepared by their employer [2] (no cat.).
  • That staff and relatives also use patient-specific protective gowns for close contact with patients in risk group 3 (see Table 1 [Tab. 1]) and therefore protective isolation [77] (cat. II).
  • Using SMs for protective isolation in risk group 3 (see Table 1 [Tab. 1]) and for targeted prevention of droplet infections (no cat.).

Staff who have an acute infection should not work in close contact with immunosuppressed patients [98]. It is important to remember that respiratory viruses, which are generally harmless and self-limiting in otherwise healthy people, can cause a potentially life-threatening infection in immunosuppressed patients [99], [100], [101]. After infection with respiratory viral pathogens, immunosuppressed patients shed these pathogens for a much longer period without symptoms [102], [103], [104], and therefore measures to prevent transmission (contact and droplet) are sometimes required for several weeks.

When there is a clear seasonal increase in the incidence of respiratory infections in the general population (e.g. a recent increase in the rate of inpatient admissions for influenza or respiratory syncytial virus infection (RSV) [105], [106], [107], [108], [109]) and during the acute phase after stem cell transplantation, it can be beneficial for the treatment team and visitors to wear SM (during all contact with the patient) [104], [110], [111]. The same applies in the oncology outpatient clinic and waiting room [112]. For a situationally appropriate and flexible approach to the treatment team and visitors wearing a SM for all close patient contact, close cooperation and coordination with hospital hygiene and the attending diagnostic laboratory (current number of confirmed cases of influenza or RSV in the hospital as a whole) is crucial.

2.1.6. Antiseptic full body washes

In recent years, a full body wash (“bathing”) with solutions containing chlorhexidine (CHX) or octenidine, or with pre-packaged washcloths, has been promoted as a basic infection prevention measure, particularly in intensive care units and before and after surgery [113]. As well as to prevent NI (e.g. bloodstream infections and postoperative wound infections), the aim is to reduce the probability of transmitting certain multidrug-resistant pathogens [114], [115], [116]. According to a recent survey by the European Society for Blood and Marrow Transplantation (EBMT), 31% of the 109 participating stem cell transplantation centres do this systematically [117]. Other than for MRSA decolonisation [118], the KRINKO has previously only recommended this measure for cases in which the treating doctors and infection control specialists consider other preventive measures to be insufficient [65], [66], [67], [119], [120]. Existing studies of the use of a full body wash in immunosuppressed patients are not sufficient for a clear recommendation [113], [121], [122]. In the commonly cited study by Climo et al., only one stem cell transplantation department participated, and its results are not presented separately (only in Fig. 2 with no statistical data) [123]. This study is also the focus of criticism because of a possible conflict of interests [124]. In the full body “wash” patient group, the incidence density of intravascular catheter-related infections caused by coagulase-negative staphylococci (CoNS), in particular, was reduced; this can also be achieved through consistent use of prevention bundles [65], [66], [67], [120]. During the study, the investigational product (CHX washcloths) was withdrawn from the market temporarily because it was contaminated with Burkholderia cepacia. The inefficacy of CHX against certain Gram-negative infectious agents can promote outbreaks of the corresponding infections [125]. Octenidine, the antiseptic used in Germany as an alternative, also exhibits gaps in efficacy here [126], [127], [128].

In the ABATE study by Huang et al., 4,730 and 5,800 oncology patients (not including acute stem cell transplantation) were included in the control and CHX full body bathing groups, respectively. There were no significant differences in the primary endpoints (clinical cultures for MRSA or VRE and the incidence of bloodstream infections). Oncology patients with a central venous catheter were probably in the subgroup of patients with devices for whom the post-hoc analysis showed a benefit. However, it remains unclear whether restricting CHX “bathing” to oncology patients with a central venous catheter (CVC) has any advantage as alternative to the design of the ABATE study [116]. Certain device-related infections such as bacteriuria and candiduria are less common in men with a urinary catheter [129] and other patients who receive a CHX full body wash [130]. This may be because CHX treatment included all skin defects and wounds as well as the first 15 cm of every catheter (e.g., the ABATE study instruction video https://vimeo.com/164608558 [116] and section 2.1.1). The use of CHX full body treatments can reduce the CHX susceptibility of Gram-positive infectious agents in the corresponding patient population in vitro [131], [132]. The clinical significance of this observation remains unclear.

As there is still insufficient evidence for immunosuppressed patients, the KRINKO can neither recommend nor dismiss the use of an antiseptic full body wash (cat. III).

2.1.7. Cleaning and disinfection

Please refer to the current version of the KRINKO recommendations entitled “Hygiene Requirements for the Cleaning and Disinfection of Surfaces” [133] and “Infection Prevention in the Care of Patients with Communicable Diseases” [2], [97], the pathogen-specific KRINKO recommendations entitled “Recommendations for the Prevention and Control of Methicillin-resistant Strains of Staphylococcus aureus (MRSA) in Medical and Care Facilities”, “Hygiene Measures for the Prevention of Infections Caused by Enterococci with Specific Antibiotic Resistance”, “Hygiene Measures for Infections or Colonisation with Multidrug-resistant Gram-negative Bacteria” and “Hygiene Measures for Clostridioides difficile Infection (CDI)” [118], [134], [135], [136] as well as recent secondary literature on this subject [137], [138], [139].

The KRINKO recommends:

  • incorporating the above requirements for the cleaning and disinfection of surfaces into an overarching quality management plan that has been reviewed and approved by the infection control specialist or member of staff responsible for hygiene standards [140], [141] (no cat.).
  • providing cleaning staff for an appropriate number of hours with evidence of specific training, who can understand and follow instructions from the treatment team immediately, (no cat.). This is necessary to meet the high and sometimes rapidly changing demands of such high-risk areas of inpatient care adequately.
2.1.8. Number and features of isolation rooms

The KRINKO recommends:

  • in view of the overall significantly increased and increasing demand for isolation rooms on a ward containing severely immunosuppressed patients [142], [143], [144], [145], [146], [147], [148], [149], [150], [151], equipping at least 50% of the rooms so they can be used for isolation: a room that can be used as a single room with ensuite sanitary facilities (shower and toilet), HS dispensers and an entrance area large enough for gowns, gloves and SM to be put on and disposed of before leaving the room [2] (cat. II).
2.1.9. Protective isolation

The KRINKO recommends:

  • accommodating neutropenic patients in risk groups 1 and 2 (Table 1 [Tab. 1]) in a single or twin room with ensuite sanitary facilities, but not larger units (three or more patients per room), and carefully observing basic hygiene measures (no cat.). As paediatric haemato-oncology patients are regularly admitted with a parent (companion caregiver), their rooms should be large enough for a folding bed to be set up next to the bed without excessively obstructing their care (particularly at night) or creating additional transmission risks.
  • accommodating patients in risk group 3 (see Table 1 [Tab. 1]) in a single room with ensuite sanitary facilities [77] (for room air requirements, see section 2.1.13) (no cat.).
2.1.10. Isolation in the event of colonisation or infection with transmissible pathogens

The treatment team should take active steps to counteract the negative effects of single-room isolation on the quality of medical and psychosocial treatment by providing adequate staffing and, where appropriate, monitoring devices (central monitors, intercom systems), facilitating external psychosocial support and making electronic forms of entertainment and communication (internet, etc.) available at the bedside [152]. No patient should receive lower-quality medical monitoring or treatment as a result of colonisation or infection or the need for protective isolation. For MRGN, VRE and MRSA, please refer to the KRINKO recommendations entitled “Hygiene Measures for Infections or Colonisation with Multidrug-resistant Gram-negative Bacteria”, “Hygiene Measures for the Prevention of Infections Caused by Enterococci with Specific Antibiotic Resistance” and “Recommendations for the Prevention and Control of Methicillin-resistant Strains of Staphylococcus aureus (MRSA) in Medical and Care Facilities” [118], [134], [135], [153].

Biehl et al. conducted a prospective study in the haemato-oncology departments of four German university hospitals [93]. They investigated the prevalence of colonisation with 3MRGN (resistance to third-generation cephalosporins and (for 3MRGN) also to fluoroquinolones. [Translator’s note: In the German MRGN classification system, an isolate is classified as 3MRGN if it is resistant to 3 of the 4 groups of antibiotics (piperacillin, third-generation cephalosporins, carbapenems and fluoroquinolones)]) E. coli on admission and the nosocomial transmission and development of bacteraemia resulting from this colonisation. Two hospitals were compared in each case. Patients with 3MRGN E. coli colonisation were treated in a single room where possible in two of the hospitals but not in the other two. In this patient population, which generally had high previous antibiotic exposure, the prevalence of 3MRGN on admission was 7.7% and 7.5%, respectively. The proportion of patients with 3MRGN colonisation was therefore slightly higher in haemato-oncology than in studies that included all university hospital admissions [93], [154], [155]. In this study, both nosocomial transmissions and bloodstream infections due to 3MRGN E. coli were extremely rare (overall 1.59% without isolation and 1.01% with isolation) and not significantly influenced by single-room isolation [93]. In a systematic literature review, the same research team also found a low incidence of secondary bloodstream infections (BSI) after colonisation with ESBL-producing Enterobacteriaceae [156]. However, an Italian multicentre study found higher BSI rates in colonised haemato-oncology patients (15.6% for ESBL producers and 14.1% for carbapenem-resistant Gram-negative pathogens [157]).

The KRINKO recommends:

  • After a medical risk analysis, isolating patients who are infected with infectious agents or shedding asymptomatically (colonised) in a room that can be used as a single room in accordance with written hygiene standards based on the transmission route of the relevant pathogen (please refer to the KRINKO recommendations entitled “Infection Prevention in the Care and Treatment of Patients with Communicable Diseases”, “Recommendations for the Prevention and Control of Methicillin-resistant Strains of Staphylococcus aureus (MRSA) in Medical and Care Facilities”, “Hygiene Measures for the Prevention of Infections Caused by Enterococci with Specific Antibiotic Resistance”, “Hygiene Measures for Infections or Colonisation with Multidrug-resistant Gram-negative Bacteria” and “Hygiene Measures for Clostridioides difficile Infection (CDI)”) [2] [97], [118], [134], [135], [136].
  • That single-room isolation is not always necessary for adult haemato-oncology patients who are colonised (or infected) with 3MRGN E.coli and able to follow basic hygiene measures consistently (for 3MRGN isolates of other species, there are no comparable studies and therefore contact isolation in high-risk areas is still recommended) [93] (cat. II).
  • That before cohorting risk group 2 patients (see Table 1 [Tab. 1]) with the same pathogen, a medical risk analysis be performed to check whether other aspects of infection prevention rule out cohorting for individual patients (no cat.).
  • That in departments specialising in the treatment of immunocompromised patients, there is at least one room that is separated from the rest of the ward by an anteroom (with two doors) and has a ventilation system (negative pressure in the anteroom with sufficient airflow) that enables patients with airborne infectious diseases (e.g. chickenpox, measles) to be isolated [2] (no cat.). Such patients can also be accommodated in a designated isolation ward at the same hospital if this ward can provide the same quality of medical monitoring and treatment for the underlying disease (no cat.).
  • Not giving patients (or their close contacts) who are isolated for a communicable disease or asymptomatic shedding of a transmissible pathogen (colonisation) free access to communal areas (e.g. the ward kitchen) (no cat.).
  • That parents/close contacts admitted with paediatric patients also isolate with the child [158]. This is particularly important for patients with MRSA, VRE, 3MRGN or 4MRGN colonisation (no cat.).

Close contacts isolated with the patient should pay particular attention to basic hygiene measures within the isolation room (HD, protective gown when providing care, e.g. washing, and clean disposable gloves when changing nappies, etc.). Hands should be disinfected before leaving the room. In some hospitals, it has proven beneficial for these parents to wear a gown (and SM, depending on the pathogen) outside the isolation room if they are not leaving the ward immediately.

2.1.11. Prevention of infections transmitted by contaminated foods

There is a fundamental distinction between:

1.
An outpatient care setting (patients eat at home or outside the healthcare facility), where basic food hygiene rules apply. Immunosuppressed patients are familiar with these rules, which should be strictly observed by patients and their relatives [58], [59], [60]. Patients and their families require specific and structured advice here (see section 2.1.2 and see Tab. 5 in Attachment 1 [Attach. 1]).
2.
The hospital kitchen, which must meet special requirements (statutory regulations and controls) based on HACCP principles [159]. Infection prevention measures during food production, storage and distribution by the hospital operator (“hospital food”) apply to all patient groups and are not included in these recommendations.
3.
Food storage and preparation in a ward kitchen that is accessible to patients and relatives (in paediatric haemato-oncology: “parents’ kitchen”). During intensive treatment, it can be difficult to feed immunosuppressed patients adequately and thereby prevent cachexia and other complications [160], [161], [162], [163] [164]. In this context, for medical reasons, it may be necessary to give patients access to their own food in addition or as an alternative to hospital food during their inpatient stay. This is sometimes achieved by bringing in food or by preparing and storing food for individual patients in a ward kitchen.
4.
The storage and delivery of food administered via a tube (gastric tube, jejunal tube, percutaneous endoscopic gastrostomy), formula milk (infants) [165], [166], [167], [168] and breast milk (if this is expressed and stored).

Of course, ward kitchens used by patients and their relatives also require a hygiene plan that has been agreed with hygiene professionals and is binding for all users of the kitchen.

The KRINKO recommends:

  • continuing to avoid certain foods with a high risk of pathogenic bacterial contamination after discharge from hospital (see Tab. 5 in Attachment 1 [Attach. 1]) and paying particular attention to basic hygiene measures when buying, storing and preparing food (see Tab. 5 in Attachment 1 [Attach. 1]) [5] (no cat.).

The KRINKO is strongly opposed to a strict “neutropenic diet”, as the benefits are unproven and such a diet can significantly reduce the patient’s quality of life [7], [77], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178] (cat. II).

Certain probiotics (of which standardisation under the German Medicinal Products Act is a significant problem) may have a favourable effect on the microbiome of immunosuppressed patients (e.g. a decrease in the incidence of antibiotic-associated diarrhoea or CDI) [179], [180], [181], [182], [183], [184]. In a study of microbiome analyses, no significant change after administration of probiotics was demonstrated [185]. However, analyses of various patient populations, individual case reports and case series suggest that probiotic microorganisms very rarely cause systemic (bloodstream) infections [185], [186], [187], [188], [189], [190], [191], [192], [193], [194], [195], [196], [197], [198], [199], [200], [201], [202].

The KRINKO recommends:

  • for immunosuppressed patients in risk groups 2 and 3, carefully weighing up the risk of using probiotics (or approving their use by declaring that probiotic supplements are safe) against the expected benefit [203], [204] (cat. III).
2.1.12. Structural functional measures to ensure a protective environment

The KRINKO recommends:

  • That wards and specialist outpatient clinics treating patients in our risk categories 1–3 may not be a passage to reach other wards or outpatient clinics but instead form separate structural units (no cat.).
  • That all surfaces, including the floor, be easy to clean and disinfect [133] (no cat.). Upholstered furniture, carpets and potted plants are not suitable [138].
  • That environmental contamination by water spray from washbasins be avoided with a splash guard where necessary. This is particularly important in intervention rooms and areas in which injections, infusions, medication and enteral feeding solutions are prepared [205] (cat. II).
2.1.13. Room air requirements

The KRINKO recommends:

  • That in order to avoid invasive aspergillosis/filamentous fungal infections, patients undergoing induction therapy for AML (or relapsed AML) and patients in the acute phase after allogeneic stem cell transplantation or with severe GVHD stay in state-of-the-art rooms supplied with HEPA-filtered air (filter class H13) during their inpatient treatment [77], [206], [207], [208] (cat. IB). After autologous stem cell transplantation (without additional immunosuppression to prevent GVHD, which does not occur) patients do not require an isolation room with HEPA-filtered air, as in most centres the incidence of invasive mould infections is under 5% [209], [210] and the use of rooms with HEPA-filtered air does not have a significant effect on the rate of nosocomial pneumonia [211].

That is why, in many centres, it has not been compulsory to treat autologous stem cell transplantation patients in isolation rooms with HEPA-filtered air for a number of years [212], [213], [214]. It is important to remember that patients may already have asymptomatic fungal colonisation of the respiratory tract or paranasal sinuses on admission, which will not be affected by the provision of HEPA 13-filtered room air. In addition to the above measures, medication to prevent fungal infections caused by Aspergillus in high-risk patients is a crucial component of the overall prevention plan for invasive mycosis. However, this is not covered by these recommendations.

The KRINKO also recommends:

  • Providing suitable protective isolation rooms with an anteroom (air pressure in the patient room is positive to the anteroom, air pressure in the anteroom is negative to the patient room and corridor, mainly to maintain safe pressure differentials between the patient room and corridor, and to prevent positive pressure in the patient room carrying pathogens into the corridor via exhaust air) [214]. However, there are no clinical studies that confirm the benefit of an anteroom for the endpoint of NI or NI transmission (no cat.).
  • With new buildings or major renovations, giving consideration to providing HEPA-filtered air, not only in individual patient rooms but also entire wards or certain sections of wards (at least two-stage F9 filtration in corridors), so that even severely immunosuppressed patients can move around freely, thereby reducing their risk of social isolation (no cat.).
  • With new buildings or major rebuilding work, not installing laminar air flow/low-turbulence displacement flow in isolation rooms, as there is no scientific evidence that this helps to prevent infection [77] (no cat.).
  • Ensuring that all ventilation systems are regularly inspected and maintained in accordance with technical specifications (DIN 1946-4) and submitting the results of the hygiene acceptance test and regular state-of-the-art hygiene tests to the infection control specialist [215] (no cat.).
  • That after an individual risk assessment, patients in risk group 2 or 3 wear a tight-fitting particle-filtering respirator (FFP2) when they leave their room [216], [217] (cat. II).
  • Not using humidifiers or other technical equipment that emits potentially contaminated aerosols or raises dust (fans; justified exception: relieving dyspnoea during palliative treatment) (no cat.).
  • If there is a ventilation system, not opening the windows where possible. It should not be possible for patients or staff to open patient room windows, except in a fire emergency. This requires appropriate state-of-the-art climate control and ventilation (see DIN 1946-4 and VDI 6022) [215], [218] (no cat.).
  • Not setting up composting or waste processing units near departments in which severely immunosuppressed patients are treated, as they can emit large quantities of fungal spores [219] (cat. II).
  • Not using leaf blowers to clear leaves in the immediate vicinity of departments in which severely immunosuppressed patients are treated; a safety zone should be defined here (no cat.).
2.1.14. Requirements relating to the water supply and sanitary facilities

This section provides a number of basic recommendations for the prevention and control of water-related infections, which are particularly important for immunosuppressed patients [220], [221], [222], [223], [224]. Please refer specifically to the recommendations in “Hygiene Requirements for Wastewater Systems in Medical Facilities” for more information on this subject. In particular, the measures described in the appendix for areas with a higher risk of infection should be considered for risk groups 2 and 3.

2.1.14.1 Hygienic construction and use of washbasins, showers and toilets in medical areas

These include [225]:

  • considering the use of thermic siphon disinfection devices in high-risk areas containing group 2 and 3 patients provided the risk of retrograde contamination or aerosol formation cannot be controlled by other technical means [222],
  • in the area surrounding the washbasin, providing an area (or storage space) that is protected from water spray, where patients can store personal care items (toothbrushes, creams, etc. and dressings) of relevance for transmission,
  • every room having ensuite sanitary facilities with a washbasin, shower and toilet (sanitary facilities shared by no more than two patients in risk groups 1 and 2, one sanitary area per patient in risk group 3),
  • washbasin taps that can be operated without using the hands. As taps with an electronic sensor may increase the risk of water contamination, their use is only justifiable with careful microbiological monitoring [226],
  • not directing the water jet into the drain or having an overflow [55], [227],
  • adequate ventilation of sanitary facilities so they do not become a reservoir for moulds and other pathogens [228],
  • choosing materials that can be cleaned using suitable disinfection methods (per-compounds, chlorine compounds) for the drains of washbasins, showers and toilets,
  • specifying how often shower tubes should be replaced (e.g. every six months),
  • not using shower curtains because these are laborious to disinfect [229], [230], [231], [232],
  • closing the toilet lid before flushing in order to avoid contaminating the surrounding area and user with spray and aerosols. The toilet should always be flushed with the lid closed before use.
  • rimless toilets [222].
2.1.14.2 Supply of drinking water (or mineral water from unopened bottles)

The KRINKO recommends:

  • If the microbiological quality of the water is not guaranteed by other means [233], using terminal bacterial filters in haemato-oncology wards and other wards treating severely immunosuppressed patients, particularly in patient rooms [224], [227], [234], [235], [236], [237], [238] (cat. II). It is important to ensure that external contamination of the filters does not result in transmission of the pathogens that its use is intended to prevent [239] (cat. II).
  • Not giving patients in risk groups 2 and 3 (see Table 1 [Tab. 1]) still mineral water in hospital (even for oral hygiene), as still mineral water can be contaminated with bacteria [240]. Instead, carbonated, sterile-filtered or boiled drinking water, or alternatively a drinking fountain with a sterile filter, is recommended (no cat.).
  • When making tea (for drinking or oral hygiene), not simply bringing water to a boil but instead leaving it on a rapid boil for several minutes [241], as tea leaves can be contaminated with pathogenic bacteria and fungi (cat. II). A critical analysis of the medical use of tea in patient care should be undertaken for this reason.
2.1.15. Hygiene requirements for demolition and reconstruction work

Building work in hospitals responsible for the inpatient care of severely immunosuppressed patients, or nearby construction or demolition work, can increase patient exposure to infectious agents [242]. This exposure can cause life-threatening infections (e.g. invasive aspergillosis of the respiratory tract) [243]. However, it is possible to avoid this kind of critical exposure through strict implementation of a suitably adapted bundle of measures ensuring close cooperation between clinicians, hospital hygiene, building designers and the companies carrying out the work [244], [245]. Antifungal prophylaxis to prevent invasive fungal infection does not provide adequate protection for severely immunosuppressed patients on its own [243]. Before any major building work takes place, the treating doctors should consider reviewing the indications in the guidelines for medication to prevent invasive fungal infections [246], [247], [248], [249], [250] in their own patient populations (not within the responsibility of KRINKO).

The KRINKO recommends:

  • Without exception, agreeing all building, renovation and demolition work in the vicinity of severely immunosuppressed patients with the appropriate hygiene professional (infection control specialist) and the most senior nurse and doctor in the relevant department as early as the planning phase and otherwise immediately [251], [252], [253], [254] (cat. II). Hospital administration, or a subunit of hospital administration in charge of building work, is responsible for informing hospital hygiene staff about such work, giving a reasonable period of advance notice, and involving infection prevention personnel in the process.
  • In contracts with the planners and companies doing the work, explicitly agreeing that the prevention guidelines of the hospital will be strictly followed by their employees and that these guidelines are a non-negotiable part of the building contract (no cat.).
  • For larger projects that are likely to mean greater exposure for immunosuppressed patients, forming a multidisciplinary prevention group coordinated by infection prevention personnel well in advance of the work starting. This group makes specific recommendations on the protective measures that are required and monitors the building work from a hospital hygiene perspective on behalf of the medical and administrative director (no cat.).
  • If necessary to protect patients, completely or temporarily transferring the relevant ward from the area of risk into another building [254], [255] until the work has been completed (cat. II).
  • If there is no central ventilation system with terminal HEPA filtration, and mainly to avoid temporarily high exposure caused by building and renovation work, considering the use of decentralised mobile HEPA filtration units in patient rooms [256], [257], [258] (cat. II).
  • Informing patients during building work and before major building or renovation work of a potentially increased risk of invasive fungal infections [242], [251], [252], [254], [259], [260], [261] in a suitable way (no cat.).
  • That, where possible, immunosuppressed patients avoid areas where building work is taking place, and wear an FFP2 respirator with an exhalation valve during transport through such areas (where this is unavoidable) [27], [48] (cat. II).
  • Safely shielding the ward from building work and preventing secondary entry of dust and dirt with a predetermined route. Where conditions allow, an impermeable dust barrier can often be created using drywall. To check for perfect sealing, a visual inspection should be performed (e.g. with gas detector/air flow test tubes) and the results documented [261] (no cat.).
  • The removal of building rubble, the exhaust air system and disposal methods must be specified. Sealed containers should be used where necessary (no cat.).
  • Cleaning patient care areas that are exposed to large amounts of construction dust with a wet disinfectant at least every working day and when dust is visible (no cat.).
  • On wards and in outpatient clinics in the immediate vicinity of activities that generate dust, not opening windows while work is ongoing and protecting sterile materials and consumables from contamination (no cat.).
  • After any work on the drinking water system with the potential to cause stagnation or contamination, or if it has not been used for a long time, checking the water for compliance with TrinkwV and for Legionella and P. aeruginosa before patients are exposed to it (cat. IV).
  • Carrying out targeted surveillance of invasive mould infections while construction work is ongoing [242], [245], [261] (no cat.).
2.1.16. Prevention of nosocomial urinary tract infections

Please refer to the KRINKO recommendations entitled “Prevention and Control of Catheter-related Urinary Tract Infections” [262].

2.1.17. Prevention of postoperative wound infections

As there is nothing specific to consider in terms of prevention strategy, please refer to the KRINKO recommendations entitled “Prevention of Postoperative Wound Infections” [263] and the secondary literature [17], [18], [19], [20], [21], [264].

2.1.18. Prevention of infections originating in intravascular catheters

In addition to the KRINKO recommendations entitled “Prevention of Infections Originating in Intravascular Catheters” [65], [66], [67], [120], please refer to the detailed recommendations on preventing catheter-related BSI published by professional associations in the fields of general medicine and paediatric haemato-oncology [68], [69].

A significant proportion of BSI in patients with mucositis and/or severe GVHD after intensive chemotherapy do not originate in intravascular catheters [265], [266]. Nevertheless, severely immunosuppressed patients who require a central venous catheter for their treatment belong to the risk groups [265], [267], [268], [269], [270], [271], [272] for which the use of specific aids (e.g. CHX-releasing dressings, disinfection caps) can be considered after a medical risk analysis [65], [66], [67], [120], [273], [274], [275], [276], [277].

2.1.19. Prevention of oral infections

The KRINKO recommends:

  • That a dental consultation be arranged for all newly admitted patients and, depending on the clinical situation, starting any dental treatment that may be required in order to minimise the risk of local inflammation and systemic infections [278], [279], [280] (cat. II).
  • Instructing patients in regular oral and dental hygiene in accordance with an in-house standard agreed by an interdisciplinary team, which can be continued during phases of oral (pharyngeal) mucositis [281], [282], [283], [284] (cat. IB).
  • General (non-targeted) use of mouthwash solutions containing CHX is not recommended in this context [285] (cat. IB).
2.1.20. Prevention of nosocomial infections of the gastrointestinal tract

Immunosuppressed patients can develop intestinal infections caused by opportunistic pathogens and shed these pathogens for a relatively long period of time, even after the acute symptoms have passed [286], [287], [288]. On the other hand, only a third of all episodes of diarrhoea in immunosuppressed patients after stem cell or organ transplantation are caused by a gastrointestinal infection [136], [289], [290]. In this context, targeted and rational pathogen diagnostics are important, including for hospital hygiene reasons [291].

The KRINKO recommends:

  • To rule out nosocomial infections in immunosuppressed patients with diarrhoea, considering prompt advanced pathogen diagnostics, the specifics of which should be established with the relevant microbiologists, virologists and hygiene professional (no cat.).
  • Depending on the pathogen (and on patient adherence to targeted prevention measures), follow-up tests to confirm the duration of isolation after symptoms of infectious diarrhoea have subsided because immunosuppressed patients may continue shedding the pathogen for much longer [292], [293], [294], [295], [296], [297] (cat. II). This does not include C. difficile-associated infections (a follow-up test is not required for asymptomatic patients) [136], [295], [298], [299], [300], [301].

Patients undergoing intensive chemotherapy or who have had a stem cell transplant are among those with the highest incidence density of CDI [299], [302], [303], [304], [305], [306]. For information on prevention, please refer to the latest KRINKO recommendations entitled “Hygiene Measures for Clostridioides difficile Infection (CDI)” [136].

2.1.21. Prevention of zoonotic diseases

The KRINKO recommends:

  • That risk group 2 and 3 patients (see Table 1 [Tab. 1]) in protective isolation have no contact with animals in hospital [61], [62], [63], [307] (cat. II).

A less restrictive approach may of course be taken with palliative care patients [308], [309], whereby contact with animals is restricted to these patients. Outside the hospital, simple rules of basic hygiene (e.g. washing hands with soap, HD) should be followed, as these can significantly reduce the risk of zoonotic diseases when handling pets and farm animals [61], [62], [63], [310], [311], [312], [313], [314], [315], [316] (see Tab. 6 and Compilation 1 in Attachment 1 [Attach. 1]).

2.2. Surveillance

Please refer to the latest version of the KRINKO recommendations entitled “Nosocomial Infection Surveillance” [317]. First and foremost, surveillance data should be used in house to reduce the NI incidence rate on a long-term basis, or keep it as low as possible, in the interests of patient safety [317], [318], [319], [320]. External communication of particularly low infection rates is not the aim of NI surveillance [318], [321], [322]. There has not yet been a conclusive study depicting the definite proportion of avoidable NI in immunosuppressed patients [22], [318]. In a survey of 109 European Society for Blood and Marrow Transplantation (EBMT) centres published in 2015, only 21% carried out prospective surveillance of catheter-related bloodstream infections (CRBSI) [117]. KRINKO encourages the relevant medical professional associations to work with the National Reference Centre for the Surveillance of Nosocomial Infections on the continuous development of existing data acquisition modules for NI in immunosuppressed patients, increasing active participation among centres and including the use of anti-infectives [93].

The KRINKO recommends:

  • That haemato-oncology treatment centres carry out prospective surveillance of nosocomial infections (particularly bloodstream infections; the RKI currently only recommends such surveillance in association with the use of intravascular catheters. For severely immunosuppressed patients, however, surveillance includes other BSI (see definition B3 in ONKO-KISS [haemato-oncology component of the nosocomial infection surveillance system]).) as set out in the German Infection Protection Act (Infektionschutzgesetz, IfSG) [323] and corresponding comments by the RKI [324], [325], [326], [327], [328], [329], [330] (cat. IB). Without surveillance, it is impossible to confirm whether prevention measures taken in the department are effective and have a beneficial effect on certain indicator infections in the long term (e.g. prevention bundles for bloodstream infections and CDI).
  • Regularly reporting NI surveillance results along with pathogen and resistance statistics for invasive infections back to the treatment team, discussing these results with them and, if necessary, specifying further infection prevention measures (cat. IV).
  • Carrying out NI surveillance using definitions that have been adapted to the characteristics of the immunocompromised patient population [330], [331], [332] (cat. II).

This includes consideration of neutropenia (incidence and duration) as the most established risk factor [327]. During cytostatic chemotherapy, however, a substantial proportion of all NI occur when the patient is not neutropenic. It is therefore sensible to include data on BSI and CDI, for example, when patients are not neutropenic [330]. In these patient groups, the ONKO-KISS module (patient-based surveillance after stem cell transplantation; https://www.nrz-hygiene.de/surveillance/kiss/onko-kiss/) and the STATIONS-KISS module (ward- or department-based surveillance of device-related infections; https://www.nrz-hygiene.de/surveillance/kiss/stations-kiss/; category: haemato-oncology) developed by the NRC are particularly suitable for NI surveillance. In general, the aim should be for hygiene professionals and haemato-oncologists to reach agreement [333], [334], [335] about whether a BSI is a secondary event (after translocation from the gastrointestinal tract in cases of severe mucositis or GVHD, for example) [265], [267], [268], [269], [270], [271], [272], [336], [337].

The KRINKO recommends:

  • That NI caused by Legionella pneumophila or Clostridioides difficile and probable/confirmed invasive fungal infections (and NI caused by pathogens with specific or multidrug resistance) also be recorded for patients who are not neutropenic [338] (cat. IV, multidrug-resistant pathogens must be recorded pursuant to section 23 of the IfSG [339]).
  • That haemato-oncology treatment centres are allocated an appropriate number of hours for surveillance by hygiene professionals [16] (no cat.).

2.3. Microbiological screening of immunosuppressed patients

Immunosuppressed patients often have comorbidities, a history of intensive contact with the healthcare system and in some cases extensive cumulative exposure to antibiotics (including certain reserve antibiotics [93]). However, the prevalence of colonisation with multidrug-resistant bacteria (e.g. MRSA, VRE, MRGN) can vary considerably in the different subgroups of immunosuppressed patients [340], [341], [342], [343], [344], and the consequences of such colonisation for individual patients cannot be summarised in a common risk algorithm [345]. In this respect, medical risk analysis and local epidemiology of infections caused by the relevant pathogens are particularly useful when deciding whether screening for certain MRP on admission helps to prevent infections [118], [134], [135], [142], [143], [144], [148], [346], [347], [348], [349], [350], [351], [352], [353], [354], [355]. For patients who come from countries with an increased incidence of tuberculosis or have stayed in these countries in the last year, tuberculosis should be included in the differential diagnosis of cough, fever and enlarged mediastinal lymph nodes for infection prevention reasons [356], [357].

The KRINKO recommends:

  • Instead of general and undifferentiated MRP screening in immunosuppressed patients, preparing a local screening plan for colonisation with certain multidrug-resistant pathogens in consultation with hygiene professionals and the attending microbiology laboratory (cat. II). The KRINKO recommendations entitled “Recommendations for the Prevention and Control of Methicillin-resistant Strains of Staphylococcus aureus (MRSA) in Medical and Care Facilities” [118], “Hygiene Measures for the Prevention of Infections Caused by Enterococci with Specific Antibiotic Resistance” [134] and “Hygiene Measures for Infections or Colonisation with Multidrug-resistant Gram-negative Bacteria” [135], [358], the medical risk analysis (patient population) and local multidrug-resistant pathogen epidemiology are the starting point for this.
  • When interpreting pathogen and resistance statistics, paying special attention to infectious agents that show resistance to the antibiotics or antifungals used to prevent infection in the department [246], [359], [360], [361], [362], [363], [364], [365], [366], [367], [368] (cat. II).
  • Outside the agreed screening indications, refraining from routine microbiological cultures of patients and the environment if there is no suspicion of an infection or outbreak because random environmental controls do not have any measurable benefit [369], [370], [371], [372], [373] (cat. IB); this excludes those prescribed by quality assurance laws and ordinances.
  • Particularly in the winter months (November to April; influenza and RSV season), in addition to prompt diagnostic tests for symptomatic patients, considering screening patients in risk group 3 (see Table 1 [Tab. 1]) for influenza and RSV on admission, for example with (RT-)PCR tests, because this makes it easier to identify immunocompromised patients who are already infectious but not (yet) symptomatic and has many implications for individual patients and hospital hygiene [100], [101], [102], [103], [104], [112], [374], [375], [376], [377], [378], [379] (cat. II).
  • In immunosuppressed patients with signs of atypical pneumonia, regular testing for Legionella (e.g. PCR testing of respiratory secretions in addition to the urinary antigen test) and, in the event of a positive result, informing hospital hygiene immediately, as even one nosocomial Legionella infection can indicate a nosocomial source of infection [234], [380] (cat. II).

2.4. Antimicrobial stewardship in immunosuppressed patients

This falls within the responsibilities of the Commission on Anti-infectives, Resistance and Therapy (ART) afilliated with the Robert Koch Institute and medical professional associations [381], [382]. The general information given here has been agreed with the ART.

Fundamentally, the hospital hygiene, infection prevention and antimicrobial stewardship (ABS) programmes followed in clinical practice have common goals that focus on patient protection (safety) and a continuous improvement in the quality of treatment [142], [143], [144], [383], [384], [385], [386], [387], [388]. This is particularly true for the prevention, control and clinical management of infections caused by pathogens with specific or multidrug resistance. In immunosuppressed patients, such pathogens are particularly important when they cause clinically severe infections (e.g. sepsis). In such cases, it can be crucial for the spectrum of efficacy of empirical antibiotic treatment to include pathogens with specific resistance [142], [143], [144], [148], [342], [346], [347], [348], [349], [350], [351], [361], [362], [388], [389], [390], [391], [392], [393], [394], [395], [396], [397], [398], [399], [400], [401], [402], [403], [404], [405], [406], [407], [408], [409], [410], [411], [412], [413], [414]. On the other hand, this must not lead to prolonged uncritical use of reserve antibiotics [156], [415], [416], [417], [418], [419], [420], [421]. In haemato-oncology, professional associations have already developed comprehensive evidence-based guidelines for diagnosis and treatment in certain clinical situations involving infectious diseases, on which a local interdisciplinary ABS programme can be based. Immunosuppressed patients with a history indicating penicillin intolerance (but not clear immediate anaphylactic reactions) must undergo further evaluation to rule out a (very rare) penicillin allergy of the immediate type so as not to be unjustifiably denied the most effective treatment with penicillins or other beta-lactam antibiotics for their indication [422], [423], [424], [425], [426], [427], [428].

The prevention and treatment of invasive fungal infections in certain high-risk patients is another broad area in which enhanced antifungal stewardship (AFS) initiatives are now being developed with the help of national and international professional association guidelines [429], [430], [431], [432], [433], [434], [435], [436], [437], [438], [439], [440], [441], [442], [443], [444], [445].

Furthermore, staff specialising in hospital hygiene and infection prevention (and doctors with responsibility for hygiene) are increasingly taking advantage of ABS training opportunities [446], and therefore synergies exist in the personalisation of corresponding programmes (see Compilation 2 in Attachment 1 [Attach. 1]).

The KRINKO recommends (with the agreement of the Commission on ART):

  • That the medical professional associations in the AWMF continue with the progressive development and detailed formulation of existing guidelines on antimicrobial stewardship [381], [382] for the different clinical areas in which immunosuppressed patients are treated so that the characteristics of this patient population are given proper consideration [148], [270], [351], [408], [447], [448], [449], [450], [451], [452], [453], [454], [455], [456], [457], [458], [459], [460], [461], [462], [463], [464], [465], [466] (cat. II). The challenge is to identify distinct targets of ABS and AFS that are as specific as possible [467] (see Compilation 2 in Attachment 1 [Attach. 1]) and implement sustainable ABS/AFS strategies in clinical practice [468].
  • When updating guidelines on the diagnosis and treatment of certain infections in immunosuppressed patients, focusing on aspects of ABS and AFS from a critical perspective and including them (no cat.).
  • Developing common indicators for the quality of hospital hygiene and infection prevention structures, processes and results and for ABS/AFS programmes in immunosuppressed patients [469], [470], [471], [472], [473] (cat. II).
  • Particularly in hospitals treating risk group 2 and 3 patients (see Table 1 [Tab. 1]), setting up ABS programmes that meet medical professional association standards (AWMF guidelines) [382] (cat. II). This also applies to paediatric haemato-oncology treatment centres and paediatric organ transplantation centres [381] (cat. II).

These recommendations were produced on behalf of the Commission for Hospital Hygiene and Infection Prevention by Prof. Heike von Baum, Dr. Peter Bischoff, Prof. Dr. Maximilian Christopeit, Prof. Steffen Engelhart, Prof. Martin Exner, Prof. Thomas Lehrnbecher and Prof. Arne Simon (Head of the Working Party) on a voluntary basis and without influence from commercial groups. From the Robert Koch Institute, Dr. Eva Feuerhahn and Dr. Melanie Brunke were involved. The recommendations were prepared by the working party and, after a detailed discussion, agreed by the Commission.


Notes

Competing interests

The author declares to have no competing interests.


References

1.
Berner R, Sauter S, Duffner U, Brandis M, Niemeyer CM. Bakteriämie-Episoden bei pädiatrisch-onkologischen Patienten, insbesondere durch Streptokokken der Viridans-Gruppe. Klin Padiatr. 1998;210(4):256-60.
2.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl. 2015;58(10):1151-70.
3.
Miller HK, Braun TM, Stillwell T, Harris AC, Choi S, Connelly J, Couriel D, Goldstein S, Kitko CL, Magenau J, Pawarode A, Reddy P, Riwes M, Yanik GA, Levine JE. Infectious Risk after Allogeneic Hematopoietic Cell Transplantation Complicated by Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017 Mar;23(3):522-8. DOI: 10.1016/j.bbmt.2016.12.630 External link
4.
Harris AC, Young R, Devine S, Hogan WJ, Ayuk F, Bunworasate U, Chanswangphuwana C, Efebera YA, Holler E, Litzow M, Ordemann R, Qayed M, Renteria AS, Reshef R, Wölfl M, Chen YB, Goldstein S, Jagasia M, Locatelli F, Mielke S, Porter D, Schechter T, Shekhovtsova Z, Ferrara JL, Levine JE. International, Multicenter Standardization of Acute Graft-versus-Host Disease Clinical Data Collection: A Report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22(1):4-10. DOI: 10.1016/j.bbmt.2015.09.001 External link
5.
Fox N, Freifeld AG. The neutropenic diet reviewed: moving toward a safe food handling approach. Oncology (Williston Park). 2012;26(6):572-5, 80, 82 passim.
6.
Maia JE, da Cruz LB, Gregianin LJ. Microbiological profile and nutritional quality of a regular diet compared to a neutropenic diet in a pediatric oncology unit. Pediatr Blood Cancer. 2018;65(3):e26828. DOI: 10.1002/pbc.26828 External link
7.
Moody KM, Baker RA, Santizo RO, Olmez I, Spies JM, Buthmann A, Granowetter L, Dulman RY, Ayyanar K, Gill JB, Carroll AE. A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients. Pediatr Blood Cancer. 2018 Jan;65(1). DOI: 10.1002/pbc.26711 External link
8.
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb;315(8):801-10. DOI: 10.1001/jama.2016.0287 External link
9.
Kochanek M, Schalk E, von Bergwelt-Baildon M, Beutel G, Buchheidt D, Hentrich M, Henze L, Kiehl M, Liebregts T, von Lilienfeld-Toal M, Classen A, Mellinghoff S, Penack O, Piepel C, Böll B. Management of sepsis in neutropenic cancer patients: 2018 guidelines from the Infectious Diseases Working Party (AGIHO) and Intensive Care Working Party (iCHOP) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol. 2019 May;98(5):1051-69. DOI: 10.1007/s00277-019-03622-0 External link
10.
Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, Deutschman CS, Escobar GJ, Angus DC. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):762-74. DOI: 10.1001/jama.2016.0288 External link
11.
Tsioutis C, Birgand G, Bathoorn E, Deptula A, Ten Horn L, Castro-Sánchez E, Săndulescu O, Widmer AF, Tsakris A, Pieve G, Tacconelli E, Mutters NT. Education and training programmes for infection prevention and control professionals: mapping the current opportunities and local needs in European countries. Antimicrob Resist Infect Control. 2020 11;9(1):183. DOI: 10.1186/s13756-020-00835-1 External link
12.
Stosor V, Zembower TR, editors. Infectious Complications in Cancer Patients. Vol 161. Cham (CH): Springer International Publishing; 2014. (Cancer Treatment and Research).
13.
Girmenia C, Candoni A, Delia M, Latagliata R, Molteni A, Oliva EN, Palumbo GA, Poloni A, Salutari P, Santini V, Voso MT, Musto P. Infection control in patients with myelodysplastic syndromes who are candidates for active treatment: Expert panel consensus-based recommendations. Blood Rev. 2019 Mar;34:16-25. DOI: 10.1016/j.blre.2018.10.002 External link
14.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Anforderungen an die Hygiene bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsbl. 2010;53(4):357-88. DOI: 10.1007/s00103-010-1028-9 External link
15.
Ständige Impfkommision (STIKO). Hinweise der STIKO zu Impfungen für Patienten mit Immundefizienz. Stand: November 2005. Epid Bull. 2005;39:1-12.
16.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Personelle und organisatorische Voraussetzungen zur Prävention nosokomialer Infektionen. Bundesgesundheitsbl. 2009;53(9):951-62. DOI: 10.1007/s00103-009-0929-y External link
17.
Rolston KV. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther. 2017 Mar;6(1):69-83. DOI: 10.1007/s40121-017-0146-1 External link
18.
Avritscher EB, Cooksley CD, Rolston KV, Swint JM, Delclos GL, Franzini L, Swisher SG, Walsh GL, Mansfield PF, Elting LS. Serious postoperative infections following resection of common solid tumors: outcomes, costs, and impact of hospital surgical volume. Support Care Cancer. 2014 Feb;22(2):527-35. DOI: 10.1007/s00520-013-2006-1 External link
19.
Sammon J, Trinh VQ, Ravi P, Sukumar S, Gervais MK, Shariat SF, Larouche A, Tian Z, Kim SP, Kowalczyk KJ, Hu JC, Menon M, Karakiewicz PI, Trinh QD, Sun M. Health care-associated infections after major cancer surgery: temporal trends, patterns of care, and effect on mortality. Cancer. 2013 Jun;119(12):2317-24. DOI: 10.1002/cncr.28027 External link
20.
Sammon JD, Klett DE, Sood A, Olugbade K Jr, Schmid M, Kim SP, Menon M, Trinh QD. Sepsis after major cancer surgery. J Surg Res. 2015 Feb;193(2):788-94. DOI: 10.1016/j.jss.2014.07.046 External link
21.
Rolston KVI, Nesher L, Tarrand JT. Current Microbiology of Surgical Site Infections in Patients with Cancer: A Retrospective Review. Infect Dis Ther. 2014;3(2):245-56. DOI: 10.1007/s40121-014-0048-4 External link
22.
Schreiber PW, Sax H, Wolfensberger A, Clack L, Kuster SP; Swissnoso. The preventable proportion of healthcare-associated infections 2005-2016: Systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018 11;39(11):1277-95. DOI: 10.1017/ice.2018.183 External link
23.
Crossnohere NL, Richardson DR, Reinhart C, O’Donoghue B, Love SM, Smith BD, Bridges JFP. Side effects from acute myeloid leukemia treatment: results from a national survey. Curr Med Res Opin. 2019 Nov;35(11):1965-70. DOI: 10.1080/03007995.2019.1631149 External link
24.
Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer. 2010 Dec;116(23):5555-63. DOI: 10.1002/cncr.25332 External link
25.
Rhee C, Jones TM, Hamad Y, Pande A, Varon J, O’Brien C, Anderson DJ, Warren DK, Dantes RB, Epstein L, Klompas M; Centers for Disease Control and Prevention (CDC) Prevention Epicenters Program. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw Open. 2019 Feb;2(2):e187571. DOI: 10.1001/jamanetworkopen.2018.7571 External link
26.
Pergam SA. Infection Prevention in Transplantation. Curr Infect Dis Rep. 2016 Jan;18(2):7. DOI: 10.1007/s11908-015-0513-6 External link
27.
Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, Wingard JR, Young JA, Boeckh MJ, Boeckh MA; Center for International Blood and Marrow Research; National Marrow Donor program; European Blood and MarrowTransplant Group; American Society of Blood and Marrow Transplantation; Canadian Blood and Marrow Transplant Group; Infectious Diseases Society of America; Society for Healthcare Epidemiology of America; Association of Medical Microbiology and Infectious Disease Canada; Centers for Disease Control and Prevention. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009 Oct;15(10):1143-238. DOI: 10.1016/j.bbmt.2009.06.019 External link
28.
Ullmann AJ, Schmidt-Hieber M, Bertz H, Heinz WJ, Kiehl M, Krüger W, Mousset S, Neuburger S, Neumann S, Penack O, Silling G, Vehreschild JJ, Einsele H, Maschmeyer G; Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation). Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016 Sep;95(9):1435-55. DOI: 10.1007/s00277-016-2711-1 External link
29.
Balletto E, Mikulska M. Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients. Mediterr J Hematol Infect Dis. 2015;7(1):e2015045. DOI: 10.4084/MJHID.2015.045 External link
30.
Ariza-Heredia EJ, Chemaly RF. Update on infection control practices in cancer hospitals. CA Cancer J Clin. 2018 Sep;68(5):340-55. DOI: 10.3322/caac.21462 External link
31.
Maschmeyer G, Rolston KVI, editors. Infections in Hematology A clinically oriented, compact, and up-to-date overview on all aspects of infections in hematology patients. Heidelberg: Springer; 2015.
32.
Bennett J, Dolin R, Blaser M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 9th rev. ed. Philadelphia: Elsevier; 2019
33.
Dunbar A, Tai E, Nielsen DB, Shropshire S, Richardson LC. Preventing infections during cancer treatment: development of an interactive patient education website. Clin J Oncol Nurs. 2014 Aug;18(4):426-31. DOI: 10.1188/14.CJON.426-431 External link
34.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention - Aktualisierung der Definitionen. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsbl. 2010;53(7):754-6.
35.
MTD-Verlag GmbH. Medizinprodukte-Betreiberverordnung (MPBetreibV) – Verordnung über das Errichten, Betreiben und Anwenden von Medizinprodukten (Medizinprodukte-Betreiberverordnung – MPBe-treibV) in der Neufassung vom 21. August 2002 (BGBl. I S. 3397) zuletzt geändert durch Artikel 1 und 2 der Verordnung vom 27. September 2016 (BGBl. I S. 2203). Gültig seit 1. Januar 2017. 2016 [cited 2020 Nov 01]. Available from: https://www.mtd.de/gesundheitssystem/gesetze-verordnungen/medizinprodukte-betreiberverordnung-mpbetreibv. External link
36.
Gudnadottir U, Fritz J, Zerbel S, Bernardo A, Sethi AK, Safdar N. Reducing health care-associated infections: patients want to be engaged and learn about infection prevention. Am J Infect Control. 2013 Nov;41(11):955-8. DOI: 10.1016/j.ajic.2013.03.310 External link
37.
Görig T, Dittmann K, Kramer A, Heidecke CD, Diedrich S, Hübner NO. Active involvement of patients and relatives improves subjective adherence to hygienic measures, especially selfreported hand hygiene: Results of the AHOI pilot study. Antimicrob Resist Infect Control. 2019;8:201. DOI: 10.1186/s13756-019-0648-6 External link
38.
Butenko S, Lockwood C, McArthur A. Patient experiences of partnering with healthcare professionals for hand hygiene compliance: a systematic review. JBI Database System Rev Implement Rep. 2017 Jun;15(6):1645-70. DOI: 10.11124/JBISRIR-2016-003001 External link
39.
Fernandes Agreli H, Murphy M, Creedon S, Ni Bhuachalla C, O’Brien D, Gould D, Savage E, Barry F, Drennan J, Smiddy MP, Condell S, Horgan S, Murphy S, Wills T, Burton A, Hegarty J. Patient involvement in the implementation of infection prevention and control guidelines and associated interventions: a scoping review. BMJ Open. 2019 Mar 23;9(3):e025824. DOI: 10.1136/bmjopen-2018-025824 External link
40.
Birnbach DJ, Nevo I, Barnes S, Fitzpatrick M, Rosen LF, Everett-Thomas R, Sanko JS, Arheart KL. Do hospital visitors wash their hands? Assessing the use of alcohol-based hand sanitizer in a hospital lobby. Am J Infect Control. 2012 May;40(4):340-3. DOI: 10.1016/j.ajic.2011.05.006 External link
41.
Wong MWH, Xu YZ, Bone J, Srigley JA. Impact of patient and visitor hand hygiene interventions at a pediatric hospital: A stepped wedge cluster randomized controlled trial. Am J Infect Control. 2020;48(5):511-6. DOI: 10.1016/j.ajic.2019.09.026 External link
42.
Srigley JA, Furness CD, Gardam M. Measurement of patient hand hygiene in multiorgan transplant units using a novel technology: an observational study. Infect Control Hosp Epidemiol. 2014 Nov;35(11):1336-41. DOI: 10.1086/678419 External link
43.
Gaube S, Fischer P, Windl V, Lermer E. The effect of persuasive messages on hospital visitors’ hand hygiene behavior. Health Psychol. 2020 Jun;39(6):471-81. DOI: 10.1037/hea0000854 External link
44.
Davis R, Parand A, Pinto A, Buetow S. Systematic review of the effectiveness of strategies to encourage patients to remind healthcare professionals about their hand hygiene. J Hosp Infect. 2015 Mar;89(3):141-62. DOI: 10.1016/j.jhin.2014.11.010 External link
45.
von Lengerke T, Kröning B, Lange K; Lower Saxon Diabetes Outpatient Centres Study Group. Patients’ intention to speak up for health care providers’ hand hygiene in inpatient diabetic foot wound treatment: a cross-sectional survey in diabetes outpatient centres in Lower Saxony, Germany. Psychol Health Med. 2017 Dec;22(10):1137-48. DOI: 10.1080/13548506.2016.1268696 External link
46.
Han A, Choi JS. Factors influencing infection prevention self-care behaviors in patients with hematologic cancer after discharge. Eur J Oncol Nurs. 2018 Aug;35:102-6. DOI: 10.1016/j.ejon.2018.06.005 External link
47.
Leonard K. A European survey relating to cancer therapy and neutropenic infections: nurse and patient viewpoints. Eur J Oncol Nurs. 2012;16(4):380-6.
48.
Yokoe D, Casper C, Dubberke E, Lee G, Muñoz P, Palmore T, Sepkowitz K, Young JA, Donnelly JP; Center for International Blood and Marrow Transplant Research; National Marrow Donor Program; European Blood and Marrow Transplant Group; American Society of Blood and Marrow Transplantation; Canadian Blood and Marrow Transplant Group; Infectious Disease Society of America; Society for Healthcare Epidemiology of America; Association of Medical Microbiology and Infectious Diseases Canada; Centers for Disease Control and Prevention. Safe living after hematopoietic cell transplantation. Bone Marrow Transplant. 2009 Oct;44(8):509-19. DOI: 10.1038/bmt.2009.262 External link
49.
Lequilliec N, Raymond R, Vanjak D, Baghdadi N, Boulestreau H, Zahar JR, Gangneux JP. Practices of infectious control management during neutropenia: A survey from 149 French hospitals. J Mycol Med. 2017 Jun;27(2):227-31. DOI: 10.1016/j.mycmed.2017.02.006 External link
50.
Thom KA, Kleinberg M, Roghmann MC. Infection prevention in the cancer center. Clin Infect Dis. 2013 Aug;57(4):579-85. DOI: 10.1093/cid/cit290 External link
51.
Okada J, Yamamizu Y, Fukai K. Effectiveness of hand hygiene depends on the patient’s health condition and care environment. Jpn J Nurs Sci. 2016 Oct;13(4):413-23. DOI: 10.1111/jjns.12122 External link
52.
Mody L, Washer LL, Kaye KS, Gibson K, Saint S, Reyes K, Cassone M, Mantey J, Cao J, Altamimi S, Perri M, Sax H, Chopra V, Zervos M. Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms? Clin Infect Dis. 2019 Nov;69(11):1837-44. DOI: 10.1093/cid/ciz092 External link
53.
Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva CL, Donaldson L, Boyce JM; WHO Global Patient Safety Challenge, World Alliance for Patient Safety. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis. 2006 Oct;6(10):641-52. DOI: 10.1016/S1473-3099(06)70600-4 External link
54.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Erratum zu: Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl. 2016;59(11):1503-4.
55.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl. 2016;59(9):1189-220.
56.
Reichardt C, Königer D, Bunte-Schönberger K, van der Linden P, Mönch N, Schwab F, Behnke M, Gastmeier P. Three years of national hand hygiene campaign in Germany: what are the key conclusions for clinical practice? J Hosp Infect. 2013 Feb;83 Suppl 1:S11-6. DOI: 10.1016/S0195-6701(13)60004-3 External link
57.
Kampf G, Simon A. Händehygiene bei immunsupprimierten Patienten. In: Kampf G, editor. Kompendium Händehygiene. Wiesbaden: mhp-Verlag; 2017. p. 266-71.
58.
Lund BM, O’Brien SJ. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog Dis. 2011 Sep;8(9):961-73. DOI: 10.1089/fpd.2011.0860 External link
59.
Evans EW, Redmond EC. An assessment of food safety information provision for UK chemotherapy patients to reduce the risk of foodborne infection. Public Health. 2017 Dec;153:25-35. DOI: 10.1016/j.puhe.2017.06.017 External link
60.
Evans EW, Redmond EC. Food Safety Knowledge and Self-Reported Food-Handling Practices in Cancer Treatment. Oncol Nurs Forum. 2018 Sep;45(5):E98-E110. DOI: 10.1188/18.ONF.E98-E110 External link
61.
Stull JW, Stevenson KB. Zoonotic disease risks for immunocompromised and other high-risk clients and staff: promoting safe pet ownership and contact. Vet Clin North Am Small Anim Pract. 2015 Mar;45(2):377-92, vii. DOI: 10.1016/j.cvsm.2014.11.007 External link
62.
Gurry GA, Campion V, Premawardena C, Woolley I, Shortt J, Bowden DK, Kaplan Z, Dendle C. High rates of potentially infectious exposures between immunocompromised patients and their companion animals: an unmet need for education. Intern Med J. 2017 Mar;47(3):333-5. DOI: 10.1111/imj.13361 External link
63.
Hemsworth S, Pizer B. Pet ownership in immunocompromised children – a review of the literature and survey of existing guidelines. Eur J Oncol Nurs. 2006 Apr;10(2):117-27. DOI: 10.1016/j.ejon.2005.08.001 External link
64.
Laws HJ, Baumann U, Bogdan C, Burchard G, Christopeit M, Hecht J, Heininger U, Hilgendorf I, Kern W, Kling K, Kobbe G, Külper W, Lehrnbecher T, Meisel R, Simon A, Ullmann A, de Wit M, Zepp F. Impfen bei Immundefizienz: Anwendungshinweise zu den von der Ständigen Impfkommission empfohlenen Impfungen. (III) Impfen bei hämatologischen und onkologischen Erkrankungen (antineoplastische Therapie, Stammzelltransplantation), Organtransplantation und Asplenie. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020 May;63(5):588-644. DOI: 10.1007/s00103-020-03123-w External link
65.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Implementierung. Informativer Anhang 2 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):231-44.
66.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):171-206.
67.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention von Infektionen, die von Gefäßkathetern ausgehen. Teil 2 – Periphervenöse Verweilkanülen und arterielle Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):207-15.
68.
Hentrich M, Schalk E, Schmidt-Hieber M, Chaberny I, Mousset S, Buchheidt D, Ruhnke M, Penack O, Salwender H, Wolf HH, Christopeit M, Neumann S, Maschmeyer G, Karthaus M; Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol. 2014 May;25(5):936-47. DOI: 10.1093/annonc/mdt545 External link
69.
Simon A, Furtwängler R, Laws HJ, Greiner J, Lehrnbecher T, Ammann RA, Schilling F, Graf N. Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der diatrischen Onkologie im Auftrag der Gesellschaft für pädiatrische Onkologie und Hämatologie. 5. vollst. überarb. Aufl. Wiesbaden: mhp Verlag; 2018.
70.
DeLa Cruz RF, Caillouet B, Guerrero SS. Strategic patient education program to prevent catheter-related bloodstream infection. Clin J Oncol Nurs. 2012 Feb;16(1):E12-7. DOI: 10.1188/12.CJON.E12-E17 External link
71.
Møller T, Adamsen L. Hematologic patients’ clinical and psychosocial experiences with implanted long-term central venous catheter: self-management versus professionally controlled care. Cancer Nurs. 2010 Nov-Dec;33(6):426-35. DOI: 10.1097/NCC.0b013e3181dc1908 External link
72.
Møller T, Borregaard N, Tvede M, Adamsen L. Patient education – a strategy for prevention of infections caused by permanent central venous catheters in patients with haematological malignancies: a randomized clinical trial. J Hosp Infect. 2005 Dec;61(4):330-41. DOI: 10.1016/j.jhin.2005.01.031 External link
73.
Centers for Disease Control and Prevention (CDC), CDC Foundation. 3 Steps Toward Preventing Infections During Cancer Treatment. 2019 [cited 2020 Nov 01]. Available from: https://www.preventcancerinfections.org/ External link
74.
Verbund für Angewandte Hygiene e.V. (VAH). Hygiene-Tipps für das Krankenhaus. Informationen zur Infektionsprävention. 2019 [cited 2020 Nov 01]. Available from: https://hygiene-tipps-fuer-kids.de/krankenhaus-projektbeschreibung External link
75.
Exner M, Simon A, Stiftung Deutsche Leukämie- & Lymphom-Hilfe, editors. Infektionen? Nein, danke! Wir tun was dagegen! Vermeidung übertragbarer Krankheiten bei Patienten mit Abwehrschwäche im häuslichen Umfeld. 2017 [cited 2020 Nov 01]. Available from: https://www.leukaemie-hilfe.de/nc/download-informationen.html?tx_drblob_pi1%5BdownloadUid%5D=631 External link
76.
Hall CB. Nosocomial respiratory syncytial virus infections: the “Cold War” has not ended. Clin Infect Dis. 2000;31(2):590-6. DOI: 10.1086/313960 External link
77.
Libbrecht C, Goutagny MP, Bacchetta J, Ploton C, Bienvenu AL, Bleyzac N, Mialou V, Bertrand Y, Domenech C. Impact of a change in protected environment on the occurrence of severe bacterial and fungal infections in children undergoing hematopoietic stem cell transplantation. Eur J Haematol. 2016 Jul;97(1):70-7. DOI: 10.1111/ejh.12685 External link
78.
Picheansanthian W, Chotibang J. Glove utilization in the prevention of cross transmission: a systematic review. JBI Database System Rev Implement Rep. 2015 May;13(4):188-230. DOI: 10.11124/jbisrir-2015-1817 External link
79.
Ständige Impfkommission (STIKO) am Robert Koch Institut. Hinweise zu Impfungen bei Patienten mit Immundefizienz. Epid Bull. 2005;39:353-64.
80.
Niehues T, Bogdan C, Hecht J, Mertens T, Wiese-Posselt M, Zepp F. Impfen bei Immundefizienz. Bundesgesundheitsbl. 2017;60(6):674-84.
81.
Rieger CT, Liss B, Mellinghoff S, Buchheidt D, Cornely OA, Egerer G, Heinz WJ, Hentrich M, Maschmeyer G, Mayer K, Sandherr M, Silling G, Ullmann A, Vehreschild MJGT, von Lilienfeld-Toal M, Wolf HH, Lehners N; German Society of Hematology and Medical Oncology Infectious Diseases Working Group (AGIHO). Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors-Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann Oncol. 2018 Jun;29(6):1354-65. DOI: 10.1093/annonc/mdy117 External link
82.
El Ramahi R, Freifeld A. Epidemiology, Diagnosis, Treatment, and Prevention of Influenza Infection in Oncology Patients. J Oncol Pract. 2019 Apr;15(4):177-84. DOI: 10.1200/JOP.18.00567 External link
83.
Price SA, Podczervinski S, MacLeod K, Helbert L, Pergam SA. Understanding influenza vaccination rates and reasons for refusal in caregivers and household contacts of cancer patients. Am J Infect Control. 2019 Apr;47(4):468-70. DOI: 10.1016/j.ajic.2018.10.010 External link
84.
Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention (Masernschutzgesetz). Vom 10. Februar 2020. BGBl Teil I. Nr. 6. p.148-57.
85.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Impfungen von Personal in medizinischen Einrichtungen in Deutschland: Empfehlung zur Umsetzung der gesetzlichen Regelung in § 23a Infektionsschutzgesetz. Bundesgesundheitsbl. 2021;64(5):636-42.
86.
Berg TT, Wicker S. Impfungen für medizinisches Personal. Krankenhaushygiene up2date. 2018;13(03):331-42.
87.
Frenzel E, Chemaly RF, Ariza-Heredia E, Jiang Y, Shah DP, Thomas G, Graviss L, Raad I. Association of increased influenza vaccination in health care workers with a reduction in nosocomial influenza infections in cancer patients. Am J Infect Control. 2016 Sep;44(9):1016-21. DOI: 10.1016/j.ajic.2016.03.024 External link
88.
Field RI. Mandatory vaccination of health care workers: whose rights should come first? Pharm Ther. 2009;34(11):615-8.
89.
Maltezou HC, Poland GA. Vaccination policies for healthcare workers in Europe. Vaccine. 2014 Aug;32(38):4876-80. DOI: 10.1016/j.vaccine.2013.10.046 External link
90.
Maltezou HC, Dedoukou X, Vernardaki A, Katerelos P, Kostea E, Tsiodras S, Mentis A, Saroglou G, Theodoridou M, Georgakopoulou T. Measles in healthcare workers during the ongoing epidemic in Greece, 2017–2018. J Hosp Infect. 2018 Dec;100(4):e261-e263. DOI: 10.1016/j.jhin.2018.06.007 External link
91.
Maltezou HC, Poland GA. Immunization of healthcare providers: a critical step toward patient safety. Vaccine. 2014 Aug;32(38):4813. DOI: 10.1016/j.vaccine.2014.05.046 External link
92.
Montoya A, Schildhouse R, Goyal A, Mann JD, Snyder A, Chopra V, Mody L. How often are health care personnel hands colonized with multidrug- resistant organisms? A systematic review and meta-analysis. Am J Infect Control. 2019 Jun;47(6):693-703. DOI: 10.1016/j.ajic.2018.10.017 External link
93.
Biehl LM, Higgins P, Wille T, Peter K, Hamprecht A, Peter S, Dörfel D, Vogel W, Häfner H, Lemmen S, Panse J, Rohde H, Klupp EM, Schafhausen P, Imirzalioglu C, Falgenhauer L, Salmanton-García J, Stecher M, Vehreschild JJ, Seifert H, Vehreschild MJGT. Impact of single-room contact precautions on hospital-acquisition and transmission of multidrug-resistant Escherichia coli: a prospective multicentre cohort study in haematological and oncological wards. Clin Microbiol Infect. 2019 Aug;25(8):1013-20. DOI: 10.1016/j.cmi.2018.12.029 External link
94.
Sodré da Costa LS, Neves VM, Marra AR, Sampaio Camargo TZ, Fátima dos Santos Cardoso M, da Silva Victor E, Vogel C, Tahira Colman FA, Laselva CR, Pavão dos Santos OF, Edmond MB. Measuring hand hygiene compliance in a hematology-oncology unit: a comparative study of methodologies. Am J Infect Control. 2013 Nov;41(11):997-1000. DOI: 10.1016/j.ajic.2013.03.301 External link
95.
Graf K, Ott E, Wolny M, Tramp N, Vonberg RP, Haverich A, Chaberny IF. Hand hygiene compliance in transplant and other special patient groups: an observational study. Am J Infect Control. 2013 Jun;41(6):503-8. DOI: 10.1016/j.ajic.2012.09.009 External link
96.
Fehling P, Hasenkamp J, Unkel S, Thalmann I, Hornig S, Trümper L, Scheithauer S. Effect of gloved hand disinfection on hand hygiene before infection-prone procedures on a stem cell ward. J Hosp Infect. 2019 Nov;103(3):321-7. DOI: 10.1016/j.jhin.2019.06.004 External link
97.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Erratum zu: Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl. 2016;59(1):124-9.
98.
Szymczak JE, Smathers S, Hoegg C, Klieger S, Coffin SE, Sammons JS. Reasons Why Physicians and Advanced Practice Clinicians Work While Sick: A Mixed-Methods Analysis. JAMA Pediatr. 2015 Sep;169(9):815-21. DOI: 10.1001/jamapediatrics.2015.0684 External link
99.
Bailey ES, Lobaugh-Jin E, Smith B, Sova C, Misuraca J, Henshaw N, Gray GC. Molecular epidemiology of an outbreak of human parainfluenza virus 3 among oncology patients. J Hosp Infect. 2019 Nov;103(3):349-53. DOI: 10.1016/j.jhin.2019.07.012 External link
100.
Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014 Nov;59 Suppl 5:S344-51. DOI: 10.1093/cid/ciu623 External link
101.
Campbell AP, Guthrie KA, Englund JA, Farney RM, Minerich EL, Kuypers J, Corey L, Boeckh M. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis. 2015 Jul;61(2):192-202. DOI: 10.1093/cid/civ272 External link
102.
Geis S, Prifert C, Weissbrich B, Lehners N, Egerer G, Eisenbach C, Buchholz U, Aichinger E, Dreger P, Neben K, Burkhardt U, Ho AD, Kräusslich HG, Heeg K, Schnitzler P. Molecular characterization of a respiratory syncytial virus outbreak in a hematology unit in Heidelberg, Germany. J Clin Microbiol. 2013 Jan;51(1):155-62. DOI: 10.1128/JCM.02151-12 External link
103.
Lehners N, Tabatabai J, Prifert C, Wedde M, Puthenparambil J, Weissbrich B, Biere B, Schweiger B, Egerer G, Schnitzler P. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders. PLoS One. 2016;11(2):e0148258. DOI: 10.1371/journal.pone.0148258 External link
104.
von Lilienfeld-Toal M, Berger A, Christopeit M, Hentrich M, Heussel CP, Kalkreuth J, Klein M, Kochanek M, Penack O, Hauf E, Rieger C, Silling G, Vehreschild M, Weber T, Wolf HH, Lehners N, Schalk E, Mayer K. Community acquired respiratory virus infections in cancer patients-Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur J Cancer. 2016 Nov;67:200-12. DOI: 10.1016/j.ejca.2016.08.015 External link
105.
Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol. 2018;9:3097. DOI: 10.3389/fmicb.2018.03097 External link
106.
Shah DP, Ghantoji SS, Mulanovich VE, Ariza-Heredia EJ, Chemaly RF. Management of respiratory viral infections in hematopoietic cell transplant recipients. Am J Blood Res. 2012;2(4):203-18.
107.
Shah DP, Shah PK, Azzi JM, El Chaer F, Chemaly RF. Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review. Cancer Lett. 2016 Aug;379(1):100-6. DOI: 10.1016/j.canlet.2016.05.035 External link
108.
Sung L, Alonzo TA, Gerbing RB, Aplenc R, Lange BJ, Woods WG, Feusner J, Franklin J, Patterson MJ, Gamis AS; Children’s Oncology Group. Respiratory syncytial virus infections in children with acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008 Dec;51(6):784-6. DOI: 10.1002/pbc.21710 External link
109.
Khawaja F, Chemaly RF. Respiratory syncytial virus in hematopoietic cell transplant recipients and patients with hematologic malignancies. Haematologica. 2019 Jul;104(7):1322-31. DOI: 10.3324/haematol.2018.215152 External link
110.
Sokol KA, De la Vega-Diaz I, Edmondson-Martin K, Kim S, Tindle S, Wallach F, Steinberg A. Masks for prevention of respiratory viruses on the BMT unit: results of a quality initiative. Transpl Infect Dis. 2016 Dec;18(6):965-7. DOI: 10.1111/tid.12608 External link
111.
Sung AD, Sung JAM, Thomas S, Hyslop T, Gasparetto C, Long G, Rizzieri D, Sullivan KM, Corbet K, Broadwater G, Chao NJ, Horwitz ME. Universal Mask Usage for Reduction of Respiratory Viral Infections After Stem Cell Transplant: A Prospective Trial. Clin Infect Dis. 2016 Oct;63(8):999-1006. DOI: 10.1093/cid/ciw451 External link
112.
Chu HY, Englund JA, Podczervinski S, Kuypers J, Campbell AP, Boeckh M, Pergam SA, Casper C. Nosocomial transmission of respiratory syncytial virus in an outpatient cancer center. Biol Blood Marrow Transplant. 2014 Jun;20(6):844-51. DOI: 10.1016/j.bbmt.2014.02.024 External link
113.
Huang SS. Chlorhexidine-based decolonization to reduce healthcare-associated infections and multidrug-resistant organisms (MDROs): who, what, where, when, and why? J Hosp Infect. 2019 Nov;103(3):235-43. DOI: 10.1016/j.jhin.2019.08.025 External link
114.
Messler S, Klare I, Wappler F, Werner G, Ligges U, Sakka SG, Mattner F. Reduction of nosocomial bloodstream infections and nosocomial vancomycin-resistant Enterococcus faecium on an intensive care unit after introduction of antiseptic octenidine-based bathing. J Hosp Infect. 2019 Mar;101(3):264-71. DOI: 10.1016/j.jhin.2018.10.023 External link
115.
Fan CY, Lee WT, Hsu TC, Lee CH, Wang SP, Chen WS, Huang CH, Lee CC. Effect of chlorhexidine bathing on colonization or infection with Acinetobacter baumannii: a systematic review and meta-analysis. J Hosp Infect. 2019 Nov;103(3):284-92. DOI: 10.1016/j.jhin.2019.08.004 External link
116.
Huang SS, Septimus E, Kleinman K, Moody J, Hickok J, Heim L, Gombosev A, Avery TR, Haffenreffer K, Shimelman L, Hayden MK, Weinstein RA, Spencer-Smith C, Kaganov RE, Murphy MV, Forehand T, Lankiewicz J, Coady MH, Portillo L, Sarup-Patel J, Jernigan JA, Perlin JB, Platt R; ABATE Infection trial team. Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial. Lancet. 2019 Mar;393(10177):1205-15. DOI: 10.1016/S0140-6736(18)32593-5 External link
117.
Snarski E, Mank A, Iacobelli S, Hoek J, Styczyński J, Babic A, Cesaro S, Johansson E. Current practices used for the prevention of central venous catheter-associated infection in hematopoietic stem cell transplantation recipients: a survey from the Infectious Diseases Working Party and Nurses’ Group of EBMT. Transpl Infect Dis. 2015 Aug;17(4):558-65. DOI: 10.1111/tid.12399 External link
118.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Bundesgesundheitsbl. 2014;57(6):696-732.
119.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention Gefäßkatheter-assoziierter Infektionen - Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsbl. 2002;25(11):907-24.
120.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention von Infektionen, die von Gefäßkathetern ausgehen. Hinweise zur Blutkulturdiagnostik. Informativer Anhang 1 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2017;60(2):216-30.
121.
Raulji CM, Clay K, Velasco C, Yu LC. Daily Bathing with Chlorhexidine and Its Effects on Nosocomial Infection Rates in Pediatric Oncology Patients. Pediatr Hematol Oncol. 2015;32(5):315-21. DOI: 10.3109/08880018.2015.1013588 External link
122.
Choi SW, Chang L, Hanauer DA, Shaffer-Hartman J, Teitelbaum D, Lewis I, Blackwood A, Akcasu N, Steel J, Christensen J, Niedner MF. Rapid reduction of central line infections in hospitalized pediatric oncology patients through simple quality improvement methods. Pediatr Blood Cancer. 2013 Feb;60(2):262-9. DOI: 10.1002/pbc.24187 External link
123.
Climo MW, Yokoe DS, Warren DK, Perl TM, Bolon M, Herwaldt LA, Weinstein RA, Sepkowitz KA, Jernigan JA, Sanogo K, Wong ES. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013 Feb;368(6):533-42. DOI: 10.1056/NEJMoa1113849 External link
124.
Abbas M, Pires D, Peters A, Morel CM, Hurst S, Holmes A, Saito H, Allegranzi B, Lucet JC, Zingg W, Harbarth S, Pittet D. Conflicts of interest in infection prevention and control research: no smoke without fire. A narrative review. Intensive Care Med. 2018 Oct;44(10):1679-90. DOI: 10.1007/s00134-018-5361-z External link
125.
Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS, Lee JC. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect. 2008 Nov;70(3):241-5. DOI: 10.1016/j.jhin.2008.07.019 External link
126.
Gastmeier P, Kämpf KP, Behnke M, Geffers C, Schwab F. An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms. J Antimicrob Chemother. 2016 Sep;71(9):2569-76. DOI: 10.1093/jac/dkw170 External link
127.
Meißner A, Hasenclever D, Brosteanu O, Chaberny IF. EFFECT of daily antiseptic body wash with octenidine on nosocomial primary bacteraemia and nosocomial multidrug-resistant organisms in intensive care units: design of a multicentre, cluster-randomised, double-blind, cross-over study. BMJ Open. 2017 Nov;7(11):e016251. DOI: 10.1136/bmjopen-2017-016251 External link
128.
Becker SL, Berger FK, Feldner SK, Karliova I, Haber M, Mellmann A, Schäfers HJ, Gärtner B. Outbreak of complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Euro Surveill. 2018 Oct;23(42). DOI: 10.2807/1560-7917.ES.2018.23.42.1800540 External link
129.
Huang SS, Septimus E, Hayden MK, Kleinman K, Sturtevant J, Avery TR, Moody J, Hickok J, Lankiewicz J, Gombosev A, Kaganov RE, Haffenreffer K, Jernigan JA, Perlin JB, Platt R, Weinstein RA; Agency for Healthcare Research and Quality (AHRQ) DEcIDE Network and Healthcare-Associated Infections Program, and the CDC Prevention Epicenters Program. Effect of body surface decolonisation on bacteriuria and candiduria in intensive care units: an analysis of a cluster-randomised trial. Lancet Infect Dis. 2016 Jan;16(1):70-9. DOI: 10.1016/S1473-3099(15)00238-8 External link
130.
Wang EW, Layon AJ. Chlorhexidine gluconate use to prevent hospital acquired infections-a useful tool, not a panacea. Ann Transl Med. 2017;5(1):14.
131.
Kampf G. Acquired resistance to chlorhexidine – is it time to establish an ‘antiseptic’ stewardship’ initiative? J Hosp Infect. 2016;94(3):213-27.
132.
McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO. Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J. 2013 Feb;32(2):124-8. DOI: 10.1097/INF.0b013e318271c4e0 External link
133.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Anforderung an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsbl. 2004;47(1):51-61.
134.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. Bundesgesundheitsbl. 2018;61(10):1310–61.
135.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Bundesgesundheitsbl. 2012;55(10):1311-54.
136.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI). Bundesgesundheitsbl. 2019;62(7):906–23.
137.
Kanamori H, Rutala WA, Weber DJ. The Role of Patient Care Items as a Fomite in Healthcare-Associated Outbreaks and Infection Prevention. Clin Infect Dis. 2017 Oct;65(8):1412-19. DOI: 10.1093/cid/cix462 External link
138.
Donskey CJ. Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control. 2013 May;41(5 Suppl):S12-9. DOI: 10.1016/j.ajic.2012.12.010 External link
139.
Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL, Umscheid CA. Cleaning Hospital Room Surfaces to Prevent Health Care-Associated Infections: A Technical Brief. Ann Intern Med. 2015 Oct;163(8):598-607. DOI: 10.7326/M15-1192 External link
140.
Leas BF, Sullivan N, Han JH, Pegues DA, Kaczmarek JL, Umscheid CA. Environmental Cleaning for the Prevention of Healthcare-Associated Infections. Rockville (MD): Agency for Healthcare Research and Quality (AHRQ); 2015.
141.
Havill NL. Best practices in disinfection of noncritical surfaces in the health care setting: creating a bundle for success. Am J Infect Control. 2013 May;41(5 Suppl):S26-30. DOI: 10.1016/j.ajic.2012.10.028 External link
142.
Satlin MJ, Chavda KD, Baker TM, Chen L, Shashkina E, Soave R, Small CB, Jacobs SE, Shore TB, van Besien K, Westblade LF, Schuetz AN, Fowler VG Jr, Jenkins SG, Walsh TJ, Kreiswirth BN. Colonization With Levofloxacin-resistant Extended-spectrum β-Lactamase-producing Enterobacteriaceae and Risk of Bacteremia in Hematopoietic Stem Cell Transplant Recipients. Clin Infect Dis. 2018 Nov;67(11):1720-8. DOI: 10.1093/cid/ciy363 External link
143.
Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014 May;58(9):1274-83. DOI: 10.1093/cid/ciu052 External link
144.
Satlin MJ, Walsh TJ. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2017 Dec;19(6). DOI: 10.1111/tid.12762 External link
145.
Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, Häntschel M, Peter S, Schafhausen P, Rohde H, Lilienfeld-Toal MV, Bekeredjian-Ding I, Libam J, Hellmich M, Vehreschild JJ, Cornely OA, Seifert H. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 2014 Dec;69(12):3387-92. DOI: 10.1093/jac/dku305 External link
146.
Vehreschild MJ, Liss BJ, Cornely OA. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2013 Oct;41(5):1049-50. DOI: 10.1007/s15010-013-0436-9 External link
147.
Vehreschild MJ, Weitershagen D, Biehl LM, Tacke D, Waldschmidt D, Töx U, Wisplinghoff H, Von Bergwelt-Baildon M, Cornely OA, Vehreschild JJ. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: epidemiology and risk factor analysis. Biol Blood Marrow Transplant. 2014 Jun;20(6):823-8. DOI: 10.1016/j.bbmt.2014.02.022 External link
148.
Ruhnke M, Arnold R, Gastmeier P. Infection control issues in patients with haematological malignancies in the era of multidrug-resistant bacteria. Lancet Oncol. 2014 Dec;15(13):e606-e619. DOI: 10.1016/S1470-2045(14)70344-4 External link
149.
Pouch SM, Satlin MJ. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence. 2017 May;8(4):391-402. DOI: 10.1080/21505594.2016.1213472 External link
150.
Medernach RL, Logan LK. The Growing Threat of Antibiotic Resistance in Children. Infect Dis Clin North Am. 2018 Mar;32(1):1-17. DOI: 10.1016/j.idc.2017.11.001 External link
151.
van Loon K, Voor In ‘t Holt AF, Vos MC. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2018;62:e01730-17.
152.
Rump B, Timen A, Hulscher M, Verweij M. Ethics of Infection Control Measures for Carriers of Antimicrobial Drug-Resistant Organisms. Emerg Infect Dis. 2018 Sep;24(9):1609-16. DOI: 10.3201/eid2409.171644 External link
153.
Kommission für Krankenhaushygiene (KRINKO). Ergänzung zur Empfehlung der KRINKO „Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ (2012) im Zusammenhang mit der von EUCAST neu definierten Kategorie „I“ bei der Antibiotika-Resistenzbestimmung: Konsequenzen für die Definition von MRGN. Epid Bull. 2019;9:82-3.
154.
Rohde AM, Zweigner J, Wiese-Posselt M, Schwab F, Behnke M, Kola A, Obermann B, Knobloch JK, Feihl S, Querbach C, Gebhardt F, Mischnik A, Ihle V, Schröder W, Armean S, Peter S, Tacconelli E, Hamprecht A, Seifert H, Vehreschild MJGT, Kern WV, Gastmeier P; DZIF-ATHOS study group. Incidence of infections due to third generation cephalosporin-resistant – a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control. 2018;7:159. DOI: 10.1186/s13756-018-0452-8 External link
155.
Boldt AC, Schwab F, Rohde AM, Kola A, Bui MT, Märtin N, Kipnis M, Schröder C, Leistner R, Wiese-Posselt M, Zweigner J, Gastmeier P, Denkel LA. Admission prevalence of colonization with third-generation cephalosporin-resistant Enterobacteriaceae and subsequent infection rates in a German university hospital. PLoS One. 2018 Aug 1;13(8):e0201548. DOI: 10.1371/journal.pone.0201548 External link
156.
Biehl LM, Schmidt-Hieber M, Liss B, Cornely OA, Vehreschild MJ. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients – Review of the literature from a clinical perspective. Crit Rev Microbiol. 2016;42(1):1-16. DOI: 10.3109/1040841X.2013.875515 External link
157.
Cattaneo C, Di Blasi R, Skert C, Candoni A, Martino B, Di Renzo N, Delia M, Ballanti S, Marchesi F, Mancini V, Orciuolo E, Cesaro S, Prezioso L, Fanci R, Nadali G, Chierichini A, Facchini L, Picardi M, Malagola M, Orlando V, Trecarichi EM, Tumbarello M, Aversa F, Rossi G, Pagano L; SEIFEM Group. Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann Hematol. 2018 Sep;97(9):1717-26. DOI: 10.1007/s00277-018-3341-6 External link
158.
Deutsche Gesellschaft für Pädiatrische Infektiologie (DGPI), Paed IC. Infektionspräventives Vorgehen bei Nachweis von MRGN im Kindesalter. Hyg Med. 2014;39(10):392-9.
159.
Joint FAO/WHO Codex Alimentarius Commission. General Requirements (Food Hygiene). Codex Alimentarius (Supplement to Volume 1B). Rome: Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO); 1997.
160.
De Waele E, Demol J, Caccialanza R, Cotogni P, Spapen H, Malbrain ML, De Grève J, Pen JJ. Unidentified cachexia patients in the oncologic setting: Cachexia UFOs do exist. Nutrition. 2019 Jul-Aug;63-64:200-4. DOI: 10.1016/j.nut.2019.02.015 External link
161.
Isenring EA, Teleni L. Nutritional counseling and nutritional supplements: a cornerstone of multidisciplinary cancer care for cachectic patients. Curr Opin Support Palliat Care. 2013 Dec;7(4):390-5. DOI: 10.1097/SPC.0000000000000016 External link
162.
Kurk S, Peeters P, Stellato R, Dorresteijn B, de Jong P, Jourdan M, Creemers GJ, Erdkamp F, de Jongh F, Kint P, Simkens L, Tanis B, Tjin-A-Ton M, Van Der Velden A, Punt C, Koopman M, May A. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J Cachexia Sarcopenia Muscle. 2019 Aug;10(4):803-83. DOI: 10.1002/jcsm.12436 External link
163.
Schmid I, Albert MH, Stachel D, Simon A. Nahrungsmittelrestriktionen zur Infektionsprävention bei Kindern mit Krebserkrankung: Was ist gesichert und was ist sinnvoll? Hyg Med. 2008;33(1/2):16-24.
164.
Baumgartner A, Hoskin K, Schuetz P. Optimization of nutrition during allogeneic hematologic stem cell transplantation. Curr Opin Clin Nutr Metab Care. 2018 May;21(3):152-8. DOI: 10.1097/MCO.0000000000000461 External link
165.
Friedemann M. Gesundheitliches Gefährdungspotenzial von Enterobacter sakazakii (Cronobacter spp. nov.) in Säuglingsnahrung. Bundesgesungheitsbl. 2008;51(6):664-74.
166.
Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis. 2010 Apr;7(4):339-50. DOI: 10.1089/fpd.2009.0379 External link
167.
Holý O, Forsythe S. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect. 2014 Mar;86(3):169-77. DOI: 10.1016/j.jhin.2013.09.011 External link
168.
Hurrell E, Kucerova E, Loughlin M, Caubilla-Barron J, Hilton A, Armstrong R, Smith C, Grant J, Shoo S, Forsythe S. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect Dis. 2009 Sep;9:146. DOI: 10.1186/1471-2334-9-146 External link
169.
Gardner A, Mattiuzzi G, Faderl S, Borthakur G, Garcia-Manero G, Pierce S, Brandt M, Estey E. Randomized comparison of cooked and noncooked diets in patients undergoing remission induction therapy for acute myeloid leukemia. J Clin Oncol. 2008 Dec;26(35):5684-8. DOI: 10.1200/JCO.2008.16.4681 External link
170.
Lassiter M, Schneider SM. A pilot study comparing the neutropenic diet to a non-neutropenic diet in the allogeneic hematopoietic stem cell transplantation population. Clin J Oncol Nurs. 2015;19(3):273-8.
171.
van Tiel F, Harbers MM, Terporten PH, van Boxtel RT, Kessels AG, Voss GB, Schouten HC. Normal hospital and low-bacterial diet in patients with cytopenia after intensive chemotherapy for hematological malignancy: a study of safety. Ann Oncol. 2007 Jun;18(6):1080-4. DOI: 10.1093/annonc/mdm082 External link
172.
Sonbol M, Jain T, Firwana B. Neutropenic diets to prevent cancer infections: updated systematic review and meta-analysis. BMJ supportive & palliative care. 2019;9(4):425-33.
173.
Ball S, Brown TJ, Das A, Khera R, Khanna S, Gupta A. Effect of Neutropenic Diet on Infection Rates in Cancer Patients With Neutropenia: A Meta-analysis of Randomized Controlled Trials. Am J Clin Oncol. 2019 Mar;42(3):270-4. DOI: 10.1097/COC.0000000000000514 External link
174.
Wolfe HR, Sadeghi N, Agrawal D, Johnson DH, Gupta A. Things We Do For No Reason: Neutropenic Diet. J Hosp Med. 2018;13(8):573-6.
175.
Tramsen L, Salzmann-Manrique E, Bochennek K, Klingebiel T, Reinhardt D, Creutzig U, Sung L, Lehrnbecher T. Lack of Effectiveness of Neutropenic Diet and Social Restrictions as Anti-Infective Measures in Children With Acute Myeloid Leukemia: An Analysis of the AML-BFM 2004 Trial. J Clin Oncol. 2016 Aug 10;34(23):2776-83. DOI: 10.1200/JCO.2016.66.7881 External link
176.
Taggart C, Neumann N, Alonso PB, Lane A, Pate A, Stegman A, Stendahl A, Davies SM, Dandoy CE, Grimley M. Comparing a Neutropenic Diet to a Food Safety-Based Diet in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019 Jul;25(7):1382-6. DOI: 10.1016/j.bbmt.2019.03.017 External link
177.
Trifilio S, Helenowski I, Giel M, Gobel B, Pi J, Greenberg D, Mehta J. Questioning the role of a neutropenic diet following hematopoetic stem cell transplantation. Biol Blood Marrow Transplant. 2012 Sep;18(9):1385-90. DOI: 10.1016/j.bbmt.2012.02.015 External link
178.
Moody K, Finlay J, Mancuso C, Charlson M. Feasibility and safety of a pilot randomized trial of infection rate: neutropenic diet versus standard food safety guidelines. J Pediatr Hematol Oncol. 2006 Mar;28(3):126-33. DOI: 10.1097/01.mph.0000210412.33630.fb External link
179.
Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, Johnston BC. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017 Dec;12:CD006095. DOI: 10.1002/14651858.CD006095.pub4 External link
180.
Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev. 2019 Apr;4:CD004827. DOI: 10.1002/14651858.CD004827.pub5 External link
181.
Ouyang X, Li Q, Shi M, Niu D, Song W, Nian Q, Li X, Ding Z, Ai X, Wang J. Probiotics for preventing postoperative infection in colorectal cancer patients: a systematic review and meta-analysis. Int J Colorectal Dis. 2019 Mar;34(3):459-69. DOI: 10.1007/s00384-018-3214-4 External link
182.
Alsadat N, Hyun K, Boroumand F, Juergens C, Kritharides L, Brieger DB. Achieving lipid targets within 12 months of an acute coronary syndrome: an observational analysis. Med J Aust. 2022 Mar 02. DOI: 10.5694/mja2.51442 External link
183.
Kujawa-Szewieczek A, Adamczak M, Kwiecień K, Dudzicz S, Gazda M, Więcek A. The Effect of Lactobacillus plantarum 299v on the Incidence of Clostridium difficile Infection in High Risk Patients Treated with Antibiotics. Nutrients. 2015 Dec;7(12):10179-88. DOI: 10.3390/nu7125526 External link
184.
Bai J, Behera M, Bruner DW. The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Support Care Cancer. 2018 Feb;26(2):427-39. DOI: 10.1007/s00520-017-3982-3 External link
185.
Gorshein E, Wei C, Ambrosy S, Budney S, Vivas J, Shenkerman A, Manago J, McGrath MK, Tyno A, Lin Y, Patel V, Gharibo M, Schaar D, Jenq RR, Khiabanian H, Strair R. Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clin Transplant. 2017 May;31(5). DOI: 10.1111/ctr.12947 External link
186.
Cohen SA, Woodfield MC, Boyle N, Stednick Z, Boeckh M, Pergam SA. Incidence and outcomes of bloodstream infections among hematopoietic cell transplant recipients from species commonly reported to be in over-the-counter probiotic formulations. Transpl Infect Dis. 2016 Oct;18(5):699-705. DOI: 10.1111/tid.12587 External link
187.
Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Järvinen A. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006 Mar;42(5):e35-44. DOI: 10.1086/500214 External link
188.
Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005 Jan;115(1):178-81. DOI: 10.1542/peds.2004-2137 External link
189.
Kunz AN, Fairchok MP, Noel JM. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005 Aug;116(2):517; author reply 517-8. DOI: 10.1542/peds.2005-0475 External link
190.
Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis. 2005 Jan;24(1):31-40. DOI: 10.1007/s10096-004-1253-y External link
191.
Arpi M, Vancanneyt M, Swings J, Leisner JJ. Six cases of Lactobacillus bacteraemia: identification of organisms and antibiotic susceptibility and therapy. Scand J Infect Dis. 2003;35(6-7):404-8. DOI: 10.1080/00365540310011830 External link
192.
Carretto E, Barbarini D, Marzani FC, Fumagalli P, Monzillo V, Marone P, Emmi V. Catheter-related bacteremia due to Lactobacillus rhamnosus in a single-lung transplant recipient. Scand J Infect Dis. 2001;33(10):780-2. DOI: 10.1080/003655401317074653 External link
193.
Cooper CD, Vincent A, Greene JN, Sandin RL, Cobian L. Lactobacillus bacteremia in febrile neutropenic patients in a cancer hospital. Clin Infect Dis. 1998;26(5):1247-8.
194.
Schlegel L, Lemerle S, Geslin P. Lactobacillus species as opportunistic pathogens in immunocompromised patients. Eur J Clin Microbiol Infect Dis. 1998 Dec;17(12):887-8. DOI: 10.1007/s100960050216 External link
195.
Muñoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Pérez MJ, Sánchez-Somolinos M, Rincón C, Hortal J, Peláez T. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis. 2005 Jun;40(11):1625-34. DOI: 10.1086/429916 External link
196.
Herbrecht R, Nivoix Y. Saccharomyces cerevisiae fungemia: an adverse effect of Saccharomyces boulardii probiotic administration. Clin Infect Dis. 2005 Jun;40(11):1635-7. DOI: 10.1086/429926 External link
197.
Enache-Angoulvant A, Hennequin C. Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis. 2005 Dec;41(11):1559-68. DOI: 10.1086/497832 External link
198.
Cesaro S, Chinello P, Rossi L, Zanesco L. Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer. 2000;8(6):504-5.
199.
Cassone M, Serra P, Mondello F, Girolamo A, Scafetti S, Pistella E, Venditti M. Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol. 2003 Nov;41(11):5340-3. DOI: 10.1128/JCM.41.11.5340-5343.2003 External link
200.
Olver WJ, James SA, Lennard A, Galloway A, Roberts IN, Boswell TC, Russell NH. Nosocomial transmission of Saccharomyces cerevisiae in bone marrow transplant patients. J Hosp Infect. 2002 Dec;52(4):268-72. DOI: 10.1053/jhin.2002.1314 External link
201.
Ladas EJ, Bhatia M, Chen L, Sandler E, Petrovic A, Berman DM, Hamblin F, Gates M, Hawks R, Sung L, Nieder M. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2016 Feb;51(2):262-6. DOI: 10.1038/bmt.2015.275 External link
202.
Yelin I, Flett KB, Merakou C, Mehrotra P, Stam J, Snesrud E, Hinkle M, Lesho E, McGann P, McAdam AJ, Sandora TJ, Kishony R, Priebe GP. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019 Nov;25(11):1728-32. DOI: 10.1038/s41591-019-0626-9 External link
203.
Diorio C, Robinson PD, Ammann RA, Castagnola E, Erickson K, Esbenshade A, Fisher BT, Haeusler GM, Kuczynski S, Lehrnbecher T, Phillips R, Cabral S, Dupuis LL, Sung L. Guideline for the Management of Infection in Children and Adolescents With Cancer and Pediatric Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol. 2018 Nov;36(31):3162-71. DOI: 10.1200/JCO.18.00407 External link
204.
Mehta A, Rangarajan S, Borate U. A cautionary tale for probiotic use in hematopoietic SCT patients-Lactobacillus acidophilus sepsis in a patient with mantle cell lymphoma undergoing hematopoietic SCT. Bone Marrow Transplant. 2013;48(3):461-2.
205.
Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, Gardam MA. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009 Jan;30(1):25-33. DOI: 10.1086/592700 External link
206.
Eckmanns T, Rüden H, Gastmeier P. The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. J Infect Dis. 2006 May;193(10):1408-18. DOI: 10.1086/503435 External link
207.
Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, Jacobsen N, Klein JP, Ljungman P, Russell JA, Schaefer UW, Sobocinski KA, Vossen JM, Zhang MJ, Horowitz MM. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant. 1998 Jun;21(12):1231-8. DOI: 10.1038/sj.bmt.1701238 External link
208.
Menegueti MG, Ferreira LR, Silva MF, Silva AS, Bellissimo-Rodrigues F. Assessment of microbiological air quality in hemato-oncology units and its relationship with the occurrence of invasive fungal infections: an integrative review. Rev Soc Bras Med Trop. 2013 Jul-Aug;46(4):391-6. DOI: 10.1590/0037-8682-0022-2013 External link
209.
Cesaro S, Tridello G, Castagnola E, Calore E, Carraro F, Mariotti I, Colombini A, Perruccio K, Decembrino N, Russo G, Maximova N, Baretta V, Caselli D. Retrospective study on the incidence and outcome of proven and probable invasive fungal infections in high-risk pediatric onco-hematological patients. Eur J Haematol. 2017 Sep;99(3):240-8. DOI: 10.1111/ejh.12910 External link
210.
Linke C, Tragiannidis A, Ahlmann M, Fröhlich B, Wältermann M, Burkhardt B, Rossig C, Groll AH. Epidemiology and management burden of invasive fungal infections after autologous hematopoietic stem cell transplantation: 10-year experience at a European Pediatric Cancer Center. Mycoses. 2019 Oct;62(10):954-60. DOI: 10.1111/myc.12968 External link
211.
Vokurka S, Bystrická E, Svoboda T, Škoda Gorican IK, Sever M, Mazur E, Kopinska A, Pavlicová V, Mocanu O, Tanase A, Ghelase R, Zítková M, Labudíková M, Raida L, Hrabánková-Navrátilová D, Bocková J. The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern European study. J Clin Nurs. 2014 Jun;23(11-12):1648-52. DOI: 10.1111/jocn.12286 External link
212.
Hicheri Y, Einsele H, Martino R, Cesaro S, Ljungman P, Cordonnier C. Environmental prevention of infection in stem cell transplant recipients: a survey of the Infectious Diseases Working Part of the European Group for Blood and Marrow Transplantation. Transpl Infect Dis. 2013;15:251-8. DOI: 10.1111/tid.12064 External link
213.
Ruijters VJ, Oosterom N, Wolfs TFW, van den Heuvel-Eibrink MM, van Grotel M. Frequency and Determinants of Invasive Fungal Infections in Children With Solid and Hematologic Malignancies in a Nonallogeneic Stem Cell Transplantation Setting: A Narrative Review. J Pediatr Hematol Oncol. 2019;41(5):345-54. DOI: 10.1097/MPH.0000000000001468 External link
214.
Styczynski J, Tridello G, Donnelly JP, Iacobelli S, Hoek J, Mikulska M, Aljurf M, Gil L, Cesaro S. Protective environment for hematopoietic cell transplant (HSCT) recipients: The Infectious Diseases Working Party EBMT analysis of global recommendations on health-care facilities. Bone Marrow Transplant. 2018 Sep;53(9):1131-8. DOI: 10.1038/s41409-018-0141-5 External link
215.
DIN 1946-4:2018-09. Raumlufttechnik – Teil 4: Raumlufttechnische Anlagen in Gebäuden und Räumen des Gesundheitswesens. Berlin: Beuth.
216.
Maschmeyer G, Neuburger S, Fritz L, Böhme A, Penack O, Schwerdtfeger R, Buchheidt D, Ludwig WD; Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Oncology. A prospective, randomised study on the use of well-fitting masks for prevention of invasive aspergillosis in high-risk patients. Ann Oncol. 2009 Sep;20(9):1560-4. DOI: 10.1093/annonc/mdp034 External link
217.
Raad I, Hanna H, Osting C, Hachem R, Umphrey J, Tarrand J, Kantarjian H, Bodey GP. Masking of neutropenic patients on transport from hospital rooms is associated with a decrease in nosocomial aspergillosis during construction. Infect Control Hosp Epidemiol. 2002 Jan;23(1):41-3. DOI: 10.1086/501967 External link
218.
Verein Deutscher Ingenieure e.V. (VDI). Richtlinienreihe VDI 6022 „Raumlufttechnik, Raumluftqualität“. [cited 2020 Nov 01]. Available from: https://www.vdi.de/richtlinien/unsere-richtlinien-highlights/vdi-6022 External link
219.
Göttlich E, Engesser K, Bardtke D. Emission von Pilzsporen in Müllverarbeitungsanlagen. Forum Städte-Hygiene. 1994;45(11/12):321-5.
220.
Dyck A, Exner M, Kramer A. Experimental based experiences with the introduction of a water safety plan for a multi-located university clinic and its efficacy according to WHO recommendations. BMC Public Health. 2007 Mar;7:34. DOI: 10.1186/1471-2458-7-34 External link
221.
Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, Peto TEA, Crook DW, Stoesser N. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature. Clin Infect Dis. 2017 May;64(10):1435-44. DOI: 10.1093/cid/cix132 External link
222.
Kossow A, Kampmeier S, Willems S, Berdel WE, Groll AH, Burkhardt B, Rossig C, Groth C, Idelevich EA, Kipp F, Mellmann A, Stelljes M. Control of Multidrug-Resistant Pseudomonas aeruginosa in Allogeneic Hematopoietic Stem Cell Transplant Recipients by a Novel Bundle Including Remodeling of Sanitary and Water Supply Systems. Clin Infect Dis. 2017 Sep;65(6):935-42. DOI: 10.1093/cid/cix465 External link
223.
Baranovsky S, Jumas-Bilak E, Lotthé A, Marchandin H, Parer S, Hicheri Y, Romano-Bertrand S. Tracking the spread routes of opportunistic premise plumbing pathogens in a haematology unit with water points-of-use protected by antimicrobial filters. J Hosp Infect. 2018 Jan;98(1):53-9. DOI: 10.1016/j.jhin.2017.07 External link
224.
Garvey MI, Bradley CW, Holden E. Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control. 2018;46(4):383-6.
225.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Anforderungen der Hygiene an abwasserführende Systeme in medizinischen Einrichtungen. Bundesgesundheitsbl. 2020;63(4):484-501.
226.
Charron D, Bédard E, Lalancette C, Laferrière C, Prévost M. Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study. Infect Control Hosp Epidemiol. 2015 Mar;36(3):311-9. DOI: 10.1017/ice.2014.46 External link
227.
Schneider H, Geginat G, Hogardt M, Kramer A, Dürken M, Schroten H, Tenenbaum T. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J. 2012 Jun;31(6):648-50. DOI: 10.1097/INF.0b013e31824d1a11 External link
228.
Picot-Guéraud R, Khouri C, Brenier-Pinchart MP, Saviuc P, Fares A, Sellon T, Thiebaut-Bertrand A, Mallaret MR. En-suite bathrooms in protected haematology wards: a source of filamentous fungal contamination? J Hosp Infect. 2015 Nov;91(3):244-9. DOI: 10.1016/j.jhin.2015.07.005 External link
229.
Brown L, Siddiqui S, McMullen A, Waller J, Baer S. Revisiting the “leading edge” of hospital privacy curtains in the medical intensive care unit. Am J Infect Control. 2020 Jul;48(7):746-0. DOI: 10.1016/j.ajic.2020.03.015 External link
230.
Larocque M, Carver S, Bertrand A, McGeer A, McLeod S, Borgundvaag B. Acquisition of bacteria on health care workers’ hands after contact with patient privacy curtains. Am J Infect Control. 2016 Nov;44(11):1385-6. DOI: 10.1016/j.ajic.2016.04.227 External link
231.
Shek K, Patidar R, Kohja Z, Liu S, Gawaziuk JP, Gawthrop M, Kumar A, Logsetty S. Rate of contamination of hospital privacy curtains on a burns and plastic surgery ward: a cross-sectional study. J Hosp Infect. 2017 May;96(1):54-8. DOI: 10.1016/j.jhin.2017.03.012 External link
232.
Wilson G, Jackson V, Boyken L, Puig-Asensio M, Marra AR, Perencevich E, Schweizer ML, Diekema D, Breheny P, Petersen C. A randomized control trial evaluating efficacy of antimicrobial impregnated hospital privacy curtains in an intensive care setting. Am J Infect Control. 2020 Aug;48(8):862-8. DOI: 10.1016/j.ajic.2019.12.024 External link
233.
Garvey MI, Wilkinson MAC, Holden KL, Martin T, Parkes J, Holden E. Tap out: reducing waterborne Pseudomonas aeruginosa transmission in an intensive care unit. J Hosp Infect. 2019;102(1):75-81.
234.
Francois Watkins LK, Toews KE, Harris AM, Davidson S, Ayers-Millsap S, Lucas CE, Hubbard BC, Kozak-Muiznieks NA, Khan E, Kutty PK. Lessons From an Outbreak of Legionnaires’ Disease on a Hematology-Oncology Unit. Infect Control Hosp Epidemiol. 2017 Mar;38(3):306-13. DOI: 10.1017/ice.2016.281 External link
235.
Micol JB, de Botton S, Guieze R, Coiteux V, Darre S, Dessein R, Leroy O, Yakoub-Agha I, Quesnel B, Bauters F, Beaucaire G, Alfandari S. An 18-case outbreak of drug-resistant Pseudomonas aeruginosa bacteriemia in hematology patients. Haematologica. 2006 Aug;91(8):1134-8.
236.
Vianelli N, Giannini MB, Quarti C, Bucci Sabattini MA, Fiacchini M, de Vivo A, Graldi P, Galli S, Nanetti A, Baccarani M, Ricci P. Resolution of a Pseudomonas aeruginosa outbreak in a hematology unit with the use of disposable sterile water filters. Haematologica. 2006 Jul;91(7):983-5.
237.
De Brabandere E, Ablorh R, Leroux-Roels I. The hospital sanitary as a source of a vim-producing multidrug resistant pseudomonas aeruginosa outbreak at the pediatric hemato-oncology ward. Antimicrob Resist Infect Control. 2017;6(Suppl 3):52.
238.
Walker J, Moore G. Safe water in healthcare premises. J Hosp Infect. 2016 Sep;94(1):1. DOI: 10.1016/j.jhin.2016.07.001 External link
239.
Garvey MI, Bradley CW, Jumaa P. The risks of contamination from tap end filters. J Hosp Infect. 2016 Nov;94(3):282-3. DOI: 10.1016/j.jhin.2016.08.006 External link
240.
Eckmanns T, Oppert M, Martin M, Amorosa R, Zuschneid I, Frei U, Rüden H, Weist K. An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units. Clin Microbiol Infect. 2008 May;14(5):454-8. DOI: 10.1111/j.1469-0691.2008.01949.x External link
241.
Wilson C, Dettenkofer M, Jonas D, Daschner FD. Pathogen growth in herbal teas used in clinical settings: a possible source of nosocomial infection? Am J Infect Control. 2004 Apr;32(2):117-9. DOI: 10.1016/j.ajic.2003.09.004 External link
242.
Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ. Review of fungal outbreaks and infection prevention in healthcare settings during construction and renovation. Clin Infect Dis. 2015 Aug;61(3):433-44. DOI: 10.1093/cid/civ297 External link
243.
Pokala HR, Leonard D, Cox J, Metcalf P, McClay J, Siegel J, Winick N. Association of hospital construction with the development of healthcare associated environmental mold infections (HAEMI) in pediatric patients with leukemia. Pediatr Blood Cancer. 2014 Feb;61(2):276-80. DOI: 10.1002/pbc.24685 External link
244.
Talento AF, Fitzgerald M, Redington B, O’Sullivan N, Fenelon L, Rogers TR. Prevention of healthcare-associated invasive aspergillosis during hospital construction/renovation works. J Hosp Infect. 2019;103(1):1-12.
245.
Berger J, Willinger B, Diab-Elschahawi M, Blacky A, Kalhs P, Koller W, Assadian O, Aichberger KJ. Effectiveness of preventive measures for hemato-oncologic patients undergoing stem cell transplantation during a period of hospital construction. Am J Infect Control. 2011 Nov;39(9):746-51. DOI: 10.1016/j.ajic.2011.01.011 External link
246.
Mellinghoff SC, Panse J, Alakel N, Behre G, Buchheidt D, Christopeit M, Hasenkamp J, Kiehl M, Koldehoff M, Krause SW, Lehners N, von Lilienfeld-Toal M, Löhnert AY, Maschmeyer G, Teschner D, Ullmann AJ, Penack O, Ruhnke M, Mayer K, Ostermann H, Wolf HH, Cornely OA. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol. 2018 Feb;97(2):197-207. DOI: 10.1007/s00277-017-3196-2 External link
247.
Lehrnbecher T. Antifungal prophylaxis in pediatric patients undergoing therapy for cancer: drugs and dosing. Curr Opin Infect Dis. 2015 Dec;28(6):523-31. DOI: 10.1097/QCO.0000000000000210 External link
248.
Yunus S, Pieper S, Kolve H, Goletz G, Jurgens H, Groll AH. Azole-based chemoprophylaxis of invasive fungal infections in paediatric patients with acute leukaemia: an internal audit. J Antimicrob Chemother. 2014;69(3):815-20.
249.
Tragiannidis A, Dokos C, Lehrnbecher T, Groll AH. Antifungal chemoprophylaxis in children and adolescents with haematological malignancies and following allogeneic haematopoietic stem cell transplantation: review of the literature and options for clinical practice. Drugs. 2012 Mar;72(5):685-704. DOI: 10.2165/11599810-000000000-00000 External link
250.
Lehrnbecher T, Fisher BT, Phillips B, Beauchemin M, Carlesse F, Castagnola E, Duong N, Dupuis LL, Fioravantti V, Groll AH, Haeusler GM, Roilides E, Science M, Steinbach WJ, Tissing W, Warris A, Patel P, Robinson PD, Sung L. Clinical Practice Guideline for Systemic Antifungal Prophylaxis in Pediatric Patients With Cancer and Hematopoietic Stem-Cell Transplantation Recipients. J Clin Oncol. 2020 Sep;38(27):3205-16. DOI: 10.1200/JCO.20.00158 External link
251.
Rhame FS. Prevention of nosocomial aspergillosis. J Hosp Infect. 1991 Jun;18 Suppl A:466-72. DOI: 10.1016/0195-6701(91)90058-g External link
252.
Streifel AJ, Lauer JL, Vesley D, Juni B, Rhame FS. Aspergillus fumigatus and other thermotolerant fungi generated by hospital building demolition. Appl Environ Microbiol. 1983 Aug;46(2):375-8. DOI: 10.1128/aem.46.2.375-378.1983 External link
253.
Vonberg RP, Gastmeier P. Nosocomial aspergillosis in outbreak settings. J Hosp Infect. 2006 Jul;63(3):246-54. DOI: 10.1016/j.jhin.2006.02.014 External link
254.
Chang CC, Ananda-Rajah M, Belcastro A, McMullan B, Reid A, Dempsey K, Athan E, Cheng AC, Slavin MA. Consensus guidelines for implementation of quality processes to prevent invasive fungal disease and enhanced surveillance measures during hospital building works, 2014. Intern Med J. 2014 Dec;44(12b):1389-97. DOI: 10.1111/imj.12601 External link
255.
Combariza JF, Toro LF, Orozco JJ, Arango M. Cost-effectiveness analysis of interventions for prevention of invasive aspergillosis among leukemia patients during hospital construction activities. Eur J Haematol. 2018 Feb;100(2):140-6. DOI: 10.1111/ejh.12991 External link
256.
Manuel RJ, Kibbler CC. The epidemiology and prevention of invasive aspergillosis. J Hosp Infect. 1998 Jun;39(2):95-109. DOI: 10.1016/s0195-6701(98)90323-1 External link
257.
Mahieu LM, De Dooy JJ, Van Laer FA, Jansens H, Ieven MM. A prospective study on factors influencing aspergillus spore load in the air during renovation works in a neonatal intensive care unit. J Hosp Infect. 2000;45(3):191-7.
258.
Barnes RA, Rogers TR. Control of an outbreak of nosocomial aspergillosis by laminar air-flow isolation. J Hosp Infect. 1989 Aug;14(2):89-94. DOI: 10.1016/0195-6701(89)90110-2 External link
259.
Klimowski LL, Rotstein C, Cummings KM. Incidence of nosocomial aspergillosis in patients with leukemia over a twenty-year period. Infect Control Hosp Epidemiol. 1989;10(7):299-305.
260.
Antoniadou A. Outbreaks of zygomycosis in hospitals. Clin Microbiol Infect. 2009 Oct;15 Suppl 5:55-9. DOI: 10.1111/j.1469-0691.2009.02982.x External link
261.
Construction-related nosocomial infections in patients in health care facilities. Decreasing the risk of Aspergillus, Legionella and other infections. Can Commun Dis Rep. 2001 Jul;27 Suppl 2:i-x, 1-42, i-x, 1-46.
262.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention und Kontrolle Katheter-assoziierter Harnwegsinfektionen. Bundesgesundheitsbl. 2015;58(6):641-50.
263.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Prävention postoperativer Wundinfektionen. Bundesgesundheitsbl. 2018;61(4):448-73.
264.
Tomsic I, Heinze NR, Chaberny IF, Krauth C, Schock B, von Lengerke T. Implementation interventions in preventing surgical site infections in abdominal surgery: a systematic review. BMC Health Serv Res. 2020 Mar;20(1):236. DOI: 10.1186/s12913-020-4995-z External link
265.
Poutsiaka DD, Munson D, Price LL, Chan GW, Snydman DR. Blood stream infection (BSI) and acute GVHD after hematopoietic SCT (HSCT) are associated. Bone Marrow Transplant. 2011 Feb;46(2):300-7. DOI: 10.1038/bmt.2010.112 External link
266.
Dandoy CE, Alonso PB. MBI-LCBI and CLABSI: more than scrubbing the line. Bone Marrow Transplant. 2019 Dec;54(12):1932-9. DOI: 10.1038/s41409-019-0489-1 External link
267.
Balian C, Garcia M, Ward J. A Retrospective Analysis of Bloodstream Infections in Pediatric Allogeneic Stem Cell Transplant Recipients: The Role of Central Venous Catheters and Mucosal Barrier Injury. J Pediatr Oncol Nurs. 2018 May;35(3):210-7. DOI: 10.1177/1043454218762706 External link
268.
Dandoy CE, Haslam D, Lane A, Jodele S, Demmel K, El-Bietar J, Flesch L, Myers KC, Pate A, Rotz S, Daniels P, Wallace G, Nelson A, Waters H, Connelly B, Davies SM. Healthcare Burden, Risk Factors, and Outcomes of Mucosal Barrier Injury Laboratory-Confirmed Bloodstream Infections after Stem Cell Transplantation. Biol Blood Marrow Transplant. 2016 Sep;22(9):1671-7. DOI: 10.1016/j.bbmt.2016.06.002 External link
269.
Lukenbill J, Rybicki L, Sekeres MA, Zaman MO, Copelan A, Haddad H, Fraser T, DiGiorgio MJ, Hanna R, Duong H, Hill B, Kalaycio M, Sobecks R, Bolwell B, Copelan E. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2013 May;19(5):720-4. DOI: 10.1016/j.bbmt.2013.01.022 External link
270.
Mikulska M, Viscoli C, Orasch C, Livermore DM, Averbuch D, Cordonnier C, Akova M; Fourth European Conference on Infections in Leukemia Group (ECIL-4), a joint venture of EBMT, EORTC, ICHS, ELN and ESGICH/ESCMID. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect. 2014 Apr;68(4):321-31. DOI: 10.1016/j.jinf.2013.12.006 External link
271.
Metzger KE, Rucker Y, Callaghan M, Churchill M, Jovanovic BD, Zembower TR, Bolon MK. The burden of mucosal barrier injury laboratory-confirmed bloodstream infection among hematology, oncology, and stem cell transplant patients. Infect Control Hosp Epidemiol. 2015 Feb;36(2):119-24. DOI: 10.1017/ice.2014.38 External link
272.
See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol. 2013 Aug;34(8):769-76. DOI: 10.1086/671281 External link
273.
Stango C, Runyan D, Stern J, Macri I, Vacca M. A successful approach to reducing bloodstream infections based on a disinfection device for intravenous needleless connector hubs. J Infus Nurs. 2014 Nov-Dec;37(6):462-5. DOI: 10.1097/NAN.0000000000000075 External link
274.
Kamboj M, Blair R, Bell N, Son C, Huang YT, Dowling M, Lipitz-Snyderman A, Eagan J, Sepkowitz K. Use of Disinfection Cap to Reduce Central-Line-Associated Bloodstream Infection and Blood Culture Contamination Among Hematology-Oncology Patients. Infect Control Hosp Epidemiol. 2015 Dec;36(12):1401-8. DOI: 10.1017/ice.2015.219 External link
275.
Timsit JF, Mimoz O, Mourvillier B, Souweine B, Garrouste-Orgeas M, Alfandari S, Plantefeve G, Bronchard R, Troche G, Gauzit R, Antona M, Canet E, Bohe J, Lepape A, Vesin A, Arrault X, Schwebel C, Adrie C, Zahar JR, Ruckly S, Tournegros C, Lucet JC. Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med. 2012 Dec;186(12):1272-8. DOI: 10.1164/rccm.201206-1038OC External link
276.
Timsit JF, Schwebel C, Bouadma L, Geffroy A, Garrouste-Orgeas M, Pease S, Herault MC, Haouache H, Calvino-Gunther S, Gestin B, Armand-Lefevre L, Leflon V, Chaplain C, Benali A, Francais A, Adrie C, Zahar JR, Thuong M, Arrault X, Croize J, Lucet JC; Dressing Study Group. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009 Mar;301(12):1231-41. DOI: 10.1001/jama.2009.376 External link
277.
Ruschulte H, Franke M, Gastmeier P, Zenz S, Mahr KH, Buchholz S, Hertenstein B, Hecker H, Piepenbrock S. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol. 2009 Mar;88(3):267-72. DOI: 10.1007/s00277-008-0568-7 External link
278.
van der Velden WJ, Herbers AH, Netea MG, Blijlevens NM. Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. Br J Haematol. 2014 Nov;167(4):441-52. DOI: 10.1111/bjh.13113 External link
279.
Zecha JAEM, Raber-Durlacher JE, Laheij AMGA, Westermann AM, Epstein JB, de Lange J, Smeele LE. The impact of the oral cavity in febrile neutropenia and infectious complications in patients treated with myelosuppressive chemotherapy. Support Care Cancer. 2019 Oct;27(10):3667-79. DOI: 10.1007/s00520-019-04925-8 External link
280.
Schmalz G, Tulani L, Busjan R, Haak R, Kottmann T, Trümper L, Hasenkamp J, Ziebolz D. Dental and Periodontal Treatment Need after Dental Clearance Is Not Associated with the Outcome of Induction Therapy in Patients with Acute Leukemia: Results of a Retrospective Pilot Study. Adv Hematol. 2020 Apr 21;2020:6710906. DOI: 10.1155/2020/6710906 External link
281.
Carvalho CG, Medeiros-Filho JB, Ferreira MC. Guide for health professionals addressing oral care for individuals in oncological treatment based on scientific evidence. Support Care Cancer. 2018 Aug;26(8):2651-61. DOI: 10.1007/s00520-018-4111-7 External link
282.
Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, McGuire DB, Migliorati C, Nicolatou-Galitis O, Peterson DE, Raber-Durlacher JE, Sonis ST, Elad S; Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO). MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014 May 15;120(10):1453-61. DOI: 10.1002/cncr.28592 External link
283.
Peterson DE, Boers-Doets CB, Bensadoun RJ, Herrstedt J; ESMO Guidelines Committee. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann Oncol. 2015 Sep;26 Suppl 5:v139-51. DOI: 10.1093/annonc/mdv202 External link
284.
Mutters NT, Neubert TR, Nieth R, Mutters R. The role of Octenidol(®), Glandomed(®) and chlorhexidine mouthwash in the prevention of mucositis and in the reduction of the oropharyngeal flora: a double-blind randomized controlled trial. GMS Hyg Infect Control. 2015;10:Doc05. DOI: 10.3205/dgkh000248 External link
285.
Cardona A, Balouch A, Abdul MM, Sedghizadeh PP, Enciso R. Efficacy of chlorhexidine for the prevention and treatment of oral mucositis in cancer patients: a systematic review with meta-analyses. J Oral Pathol Med. 2017 Oct;46(9):680-8. DOI: 10.1111/jop.12549 External link
286.
Lemes LG, Corrêa TS, Fiaccadori FS, Cardoso Dd, Arantes Ade M, Souza KM, Souza M. Prospective study on Norovirus infection among allogeneic stem cell transplant recipients: prolonged viral excretion and viral RNA in the blood. J Clin Virol. 2014 Nov;61(3):329-33. DOI: 10.1016/j.jcv.2014.08.004 External link
287.
Sheahan A, Copeland G, Richardson L, McKay S, Chou A, Babady NE, Tang YW, Boulad F, Eagan J, Sepkowitz K, Kamboj M. Control of norovirus outbreak on a pediatric oncology unit. Am J Infect Control. 2015 Oct;43(10):1066-9. DOI: 10.1016/j.ajic.2015.05.032 External link
288.
Ye X, Van JN, Munoz FM, Revell PA, Kozinetz CA, Krance RA, Atmar RL, Estes MK, Koo HL. Noroviruses as a Cause of Diarrhea in Immunocompromised Pediatric Hematopoietic Stem Cell and Solid Organ Transplant Recipients. Am J Transplant. 2015 Jul;15(7):1874-81. DOI: 10.1111/ajt.13227 External link
289.
Echenique IA, Penugonda S, Stosor V, Ison MG, Angarone MP. Diagnostic yields in solid organ transplant recipients admitted with diarrhea. Clin Infect Dis. 2015 Mar;60(5):729-37. DOI: 10.1093/cid/ciu880 External link
290.
Kamboj M, Mihu CN, Sepkowitz K, Kernan NA, Papanicolaou GA. Work-up for infectious diarrhea after allogeneic hematopoietic stem cell transplantation: single specimen testing results in cost savings without compromising diagnostic yield. Transpl Infect Dis. 2007 Dec;9(4):265-9. DOI: 10.1111/j.1399-3062.2007.00230.x External link
291.
Trinh SA, Echenique IA, Penugonda S, Angarone MP. Optimal strategies for the diagnosis of community-onset diarrhea in solid organ transplant recipients: Less is more. Transpl Infect Dis. 2017;19(2):e12673. DOI: 10.1111/tid.12673 External link
292.
Chadwick PR, Beards G, Brown D, Caul EO, Cheesbrough J, Clarke I, Curry A, O’Brien S, Quigley K, Sellwood J, Westmoreland D. Management of hospital outbreaks of gastro-enteritis due to small roundstructured viruses. J Hosp Infect. 2000 May;45(1):1-10. DOI: 10.1053/jhin.2000.0662 External link
293.
Robert Koch-Institut (RKI). Norovirus-Gastroenteritiden haben in den letzten Wochen deutlich zugenommen – steht eine neue Winterepidemie bevor? Epid Bull. 2006;48:427-9.
294.
Robert Koch-Institut (RKI). RKI-Ratgeber. Rotaviren-Gastroenteritis. 2019 [cited 2020 Nov 01]. Available from: https://www.rki.de/DE/Content/Infekt/EpidBull/Merkblaetter/Ratgeber_Rotaviren.html External link
295.
Kleinkauf N, Eckmanns T, Robert Koch-Institut (RKI). Clostridium difficile: Zum Stand der Meldungen schwer verlaufender Infektionen in Deutschland. Epid Bull. 2008;15:117-9.
296.
Daniel-Wayman S, Fahle G, Palmore T, Green KY, Prevots DR. Norovirus, astrovirus, and sapovirus among immunocompromised patients at a tertiary care research hospital. Diagn Microbiol Infect Dis. 2018;92(2):143-6.
297.
Green KY. Norovirus infection in immunocompromised hosts. Clin Microbiol Infect. 2014 Aug;20(8):717-23. DOI: 10.1111/1469-0691.12761 External link
298.
Kamboj M, Son C, Cantu S, Chemaly RF, Dickman J, Dubberke E, Engles L, Lafferty T, Liddell G, Lesperance ME, Mangino JE, Martin S, Mayfield J, Mehta SA, O’Rourke S, Perego CS, Taplitz R, Eagan J, Sepkowitz KA. Hospital-onset Clostridium difficile infection rates in persons with cancer or hematopoietic stem cell transplant: a C3IC network report. Infect Control Hosp Epidemiol. 2012 Nov;33(11):1162-5. DOI: 10.1086/668023 External link
299.
Kamboj M, Sheahan A, Sun J, Taur Y, Robilotti E, Babady E, Papanicolaou G, Jakubowski A, Pamer E, Sepkowitz K. Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant. Infect Control Hosp Epidemiol. 2016 Jan;37(1):8-15. DOI: 10.1017/ice.2015.237 External link
300.
Plößer P. Clostridium difficile: Nachweis von Ribotyp 027 in Deutschschland – Clostridium difficile im Überblick - Hygienemaßnahmen. Hyg Med. 2007;32(10):403-5.
301.
Schneider T, Eckmanns T, Ignatius R, Weist K, Liesenfeld O. Clostridium-difficile-assoziierte Diarrhö. Dtsch Arztebl. 2007;104(22):1588-94.
302.
Boyle NM, Magaret A, Stednick Z, Morrison A, Butler-Wu S, Zerr D, Rogers K, Podczervinski S, Cheng A, Wald A, Pergam SA. Evaluating risk factors for Clostridium difficile infection in adult and pediatric hematopoietic cell transplant recipients. Antimicrob Resist Infect Control. 2015;4:41. DOI: 10.1186/s13756-015-0081-4 External link
303.
Bruminhent J, Wang ZX, Hu C, Wagner J, Sunday R, Bobik B, Hegarty S, Keith S, Alpdogan S, Carabasi M, Filicko-O’Hara J, Flomenberg N, Kasner M, Outschoorn UM, Weiss M, Flomenberg P. Clostridium difficile colonization and disease in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014 Sep;20(9):1329-34. DOI: 10.1016/j.bbmt.2014.04.026 External link
304.
Kinnebrew MA, Lee YJ, Jenq RR, Lipuma L, Littmann ER, Gobourne A, No D, van den Brink M, Pamer EG, Taur Y. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS One. 2014;9(3):e90158. DOI: 10.1371/journal.pone.0090158 External link
305.
Simon A, Mock M, Graf N, von Muller L. Investigation of Clostridium difficile ribotypes in symptomatic patients of a German pediatric oncology center. Eur J Pediatr. 2018;177(3):403-8.
306.
Salamonowicz M, Ociepa T, Frączkiewicz J, Szmydki-Baran A, Matysiak M, Czyżewski K, Wysocki M, Gałązka P, Zalas-Więcek P, Irga-Jaworska N, Drożyńska E, Zając-Spychała O, Wachowiak J, Gryniewicz-Kwiatkowska O, Czajńska-Deptuła A, Dembowska-Bagińska B, Chełmecka-Wiktorczyk L, Balwierz W, Bartnik M, Zielezińska K, Urasiński T, Tomaszewska R, Szczepański T, Płonowski M, Krawczuk-Rybak M, Pierlejewski F, Młynarski W, Gamrot-Pyka Z, Woszczyk M, Małas Z, Badowska W, Urbanek-Dądela A, Karolczyk G, Stolpa W, Sobol-Milejska G, Zaucha-Prażmo A, Kowalczyk J, Goździk J, Gorczyńska E, Jermakow K, Król A, Chybicka A, Ussowicz M, Kałwak K, Styczyński J. Incidence, course, and outcome of Clostridium difficile infection in children with hematological malignancies or undergoing hematopoietic stem cell transplantation. Eur J Clin Microbiol Infect Dis. 2018 Sep;37(9):1805-12. DOI: 10.1007/s10096-018-3316-5 External link
307.
Risi GF, Tomascak V. Prevention of infection in the immunocompromised host. Am J Infect Control. 1998 Dec;26(6):594-604; quiz 605-6. DOI: 10.1053/ic.1998.v26.a89371 External link
308.
McCullough A, Ruehrdanz A, Jenkins MA, Gilmer MJ, Olson J, Pawar A, Holley L, Sierra-Rivera S, Linder DE, Pichette D, Grossman NJ, Hellman C, Guérin NA, O’Haire ME. Measuring the Effects of an Animal-Assisted Intervention for Pediatric Oncology Patients and Their Parents: A Multisite Randomized Controlled Trial [Formula: see text]. J Pediatr Oncol Nurs. 2018 May;35(3):159-77. DOI: 10.1177/1043454217748586 External link
309.
Schmitz A, Beermann M, MacKenzie CR, Fetz K, Schulz-Quach C. Animal-assisted therapy at a University Centre for Palliative Medicine – a qualitative content analysis of patient records. BMC Palliat Care. 2017;16(1):50.
310.
Ariza-Heredia EJ, Kontoyiannis DP. Our recommendations for avoiding exposure to fungi outside the hospital for patients with haematological cancers. Mycoses. 2014 Jun;57(6):336-41. DOI: 10.1111/myc.12167 External link
311.
Böhme H, Fruth A, Rabsch W. Reptilien-assoziierte Salmonelleninfektionen bei Säuglingen und Kleinkindern in Deutschland. Klin Padiatr. 2009;221(2):60-4.
312.
Boost MV, O’Donoghue MM, Siu KH. Characterisation of methicillin-resistant Staphylococcus aureus isolates from dogs and their owners. Clin Microbiol Infect. 2007 Jul;13(7):731-3. DOI: 10.1111/j.1469-0691.2007.01737.x External link
313.
Gabriels P, Joosen H, Put E, Verhaegen J, Magerman K, Cartuyvels R. Recurrent Rhodococcus equi infection with fatal outcome in an immunocompetent patient. Eur J Clin Microbiol Infect Dis. 2006;25(1):46-8.
314.
Harris JR, Neil KP, Behravesh CB, Sotir MJ, Angulo FJ. Recent multistate outbreaks of human salmonella infections acquired from turtles: a continuing public health challenge. Clin Infect Dis. 2010 Feb;50(4):554-9. DOI: 10.1086/649932 External link
315.
Morris DO, Lautenbach E, Zaoutis T, Leckerman K, Edelstein PH, Rankin SC. Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients. Zoonoses Public Health. 2012 Jun;59(4):286-93. DOI: 10.1111/j.1863-2378.2011.01448.x External link
316.
Simon A. Umgang mit Tierkontakten bei immunsupprimierten Kindern. Hyg Med. 2013;38(7/8):321-3.
317.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Surveillance von nosokomialen Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsbl. 2020;63(2):228-41.
318.
Bearman G, Doll M, Cooper K, Stevens MP. Hospital Infection Prevention: How Much Can We Prevent and How Hard Should We Try? Curr Infect Dis Rep. 2019 Feb;21(1):2. DOI: 10.1007/s11908-019-0660-2 External link
319.
Horowitz HW. Infection control IV: Moving forward- infection preventionists’ scope of practice. Am J Infect Control. 2018 Jul;46(7):734-5. DOI: 10.1016/j.ajic.2018.02.030 External link
320.
Vokes RA, Bearman G, Bazzoli GJ. Hospital-Acquired Infections Under Pay-for-Performance Systems: an Administrative Perspective on Management and Change. Curr Infect Dis Rep. 2018 Jul;20(9):35. DOI: 10.1007/s11908-018-0638-5 External link
321.
Horowitz HW. Infection control: Public reporting, disincentives, and bad behavior. Am J Infect Control. 2015 Sep;43(9):989-91. DOI: 10.1016/j.ajic.2015.02.033 External link
322.
Horowitz HW. Infection control II: A practical guide to getting to zero. Am J Infect Control. 2016;44(9):1075-7. DOI: 10.1016/j.ajic.2016.02.032 External link
323.
Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, Sanford JA, O’Neill AM, Liggins MC, Nakatsuji T, Cech NB, Cheung AL, Zengler K, Horswill AR, Gallo RL. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019 May 1;11(490):eaat8329. DOI: 10.1126/scitranslmed.aat8329 External link
324.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Mitteilungen der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung §23 IfSG). Bundesgesundheitsbl. 2001;44(5):523-36.
325.
Ammann RA, Laws HJ, Schrey D, Ehlert K, Moser O, Dilloo D, Bode U, Wawer A, Schrauder A, Cario G, Laengler A, Graf N, Furtwängler R, Simon A. Bloodstream infection in paediatric cancer centres--leukaemia and relapsed malignancies are independent risk factors. Eur J Pediatr. 2015 May;174(5):675-86. DOI: 10.1007/s00431-015-2525-5 External link
326.
Dettenkofer M, Ebner W, Bertz H, Babikir R, Finke J, Frank U, Rüden H, Daschner FD. Surveillance of nosocomial infections in adult recipients of allogeneic and autologous bone marrow and peripheral blood stem-cell transplantation. Bone Marrow Transplant. 2003 May;31(9):795-801. DOI: 10.1038/sj.bmt.1703920 External link
327.
Dettenkofer M, Wenzler-Röttele S, Babikir R, Bertz H, Ebner W, Meyer E, Rüden H, Gastmeier P, Daschner FD; Hospital Infection Surveillance System for Patients with Hematologic/Oncologic Malignancies Study Group. Surveillance of nosocomial sepsis and pneumonia in patients with a bone marrow or peripheral blood stem cell transplant: a multicenter project. Clin Infect Dis. 2005 Apr;40(7):926-31. DOI: 10.1086/428046 External link
328.
Simon A, Fleischhack G, Hasan C, Bode U, Engelhart S, Kramer MH. Surveillance for nosocomial and central line-related infections among pediatric hematology-oncology patients. Infect Control Hosp Epidemiol. 2000 Sep;21(9):592-6. DOI: 10.1086/501809 External link
329.
Simon A, Fleischhack G. Surveillance nosokomialer Infektionen in der pädiatrischen Hämatologie/Onkologie. Klin Padiatr. 2001;213(S1):A106-13.
330.
Simon A, Furtwängler R, Graf N, Laws HJ, Voigt S, Piening B, Geffers C, Agyeman P, Ammann RA. Surveillance of bloodstream infections in pediatric cancer centers - what have we learned and how do we move on? GMS Hyg Infect Control. 2016;11:Doc11. DOI: 10.3205/dgkh000271 External link
331.
Fraser TG, Gordon SM. CLABSI rates in immunocompromised patients: a valuable patient centered outcome? Clin Infect Dis. 2011 Jun;52(12):1446-50. DOI: 10.1093/cid/cir200 External link
332.
Sexton DJ, Chen LF, Anderson DJ. Current definitions of central line-associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol. 2010 Dec;31(12):1286-9. DOI: 10.1086/657583 External link
333.
Tamburini FB, Andermann TM, Tkachenko E, Senchyna F, Banaei N, Bhatt AS. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med. 2018 Dec;24(12):1809-14. DOI: 10.1038/s41591-018-0202-8 External link
334.
Gyarmati P, Kjellander C, Aust C, Kalin M, Öhrmalm L, Giske CG. Bacterial Landscape of Bloodstream Infections in Neutropenic Patients via High Throughput Sequencing. PLoS One. 2015;10(8):e0135756. DOI: 10.1371/journal.pone.0135756 External link
335.
Gopalakrishnan V, Jenq RR. Implicating or exonerating the gut microbiome in blood-borne infection. Nat Med. 2018 Dec;24(12):1788-9. DOI: 10.1038/s41591-018-0270-9 External link
336.
Chaftari AM, Jordan M, Hachem R, Al Hamal Z, Jiang Y, Yousif A, Garoge K, Deshmukh P, Raad I. A clinical practical approach to the surveillance definition of central line-associated bloodstream infection in cancer patients with mucosal barrier injury. Am J Infect Control. 2016 Aug 1;44(8):931-4. DOI: 10.1016/j.ajic.2016.03.011 External link
337.
Satwani P, Freedman JL, Chaudhury S, Jin Z, Levinson A, Foca MD, Krajewski J, Sahdev I, Talekar MK, Gardenswartz A, Silverman J, Hayes M, Dvorak CC. A Multicenter Study of Bacterial Blood Stream Infections in Pediatric Allogeneic Hematopoietic Cell Transplantation Recipients: The Role of Acute Gastrointestinal Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2017 Apr;23(4):642-7. DOI: 10.1016/j.bbmt.2017.01.073 External link
338.
Allaway Z, Phillips RS, Thursky KA, Haeusler GM. Nonneutropenic fever in children with cancer: A scoping review of management and outcome. Pediatr Blood Cancer. 2019 Jun;66(6):e27634. DOI: 10.1002/pbc.27634 External link
339.
Infektionsschutzgesetz vom 20. Juli 2000 (BGBl. I S. 1045), das zuletzt durch Artikel 5 des Gesetzes vom 19. Juni 2020 (BGBl. I S. 1385) geändert worden ist.
340.
Shaw BE, Boswell T, Byrne JL, Yates C, Russell NH. Clinical impact of MRSA in a stem cell transplant unit: analysis before, during and after an MRSA outbreak. Bone Marrow Transplant. 2007;39(10):623-9.
341.
Miles-Jay A, Podczervinski S, Stednick ZJ, Pergam SA. Evaluation of routine pretransplantation screening for methicillin-resistant Staphylococcus aureus in hematopoietic cell transplant recipients. Am J Infect Control. 2015 Jan;43(1):89-91. DOI: 10.1016/j.ajic.2014.10.010 External link
342.
Liss BJ, Vehreschild JJ, Cornely OA, Hallek M, Fätkenheuer G, Wisplinghoff H, Seifert H, Vehreschild MJ. Intestinal colonisation and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection. 2012 Dec;40(6):613-9. DOI: 10.1007/s15010-012-0269-y External link
343.
Ziakas PD, Pliakos EE, Zervou FN, Knoll BM, Rice LB, Mylonakis E. MRSA and VRE colonization in solid organ transplantation: a meta-analysis of published studies. Am J Transplant. 2014 Aug;14(8):1887-94. DOI: 10.1111/ajt.12784 External link
344.
Bert F, Larroque B, Dondero F, Durand F, Paugam-Burtz C, Belghiti J, Moreau R, Nicolas-Chanoine MH. Risk factors associated with preoperative fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in liver transplant recipients. Transpl Infect Dis. 2014 Feb;16(1):84-9. DOI: 10.1111/tid.12169 External link
345.
Webb BJ, Healy R, Majers J, Burr Z, Gazdik M, Lopansri B, Hoda D, Petersen FB, Ford C. Prediction of Bloodstream Infection Due to Vancomycin-Resistant Enterococcus in Patients Undergoing Leukemia Induction or Hematopoietic Stem-Cell Transplantation. Clin Infect Dis. 2017 Jun 15;64(12):1753-9. DOI: 10.1093/cid/cix232 External link
346.
Averbuch D, Orasch C, Cordonnier C, Livermore DM, Mikulska M, Viscoli C, Gyssens IC, Kern WV, Klyasova G, Marchetti O, Engelhard D, Akova M; ECIL4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica. 2013 Dec;98(12):1826-35. DOI: 10.3324/haematol.2013.091025 External link
347.
Baker TM, Satlin MJ. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk Lymphoma. 2016 Oct;57(10):2245-58. DOI: 10.1080/10428194.2016.1193859 External link
348.
Friedman ND, Carmeli Y, Walton AL, Schwaber MJ. Carbapenem-Resistant Enterobacteriaceae: A Strategic Roadmap for Infection Control. Infect Control Hosp Epidemiol. 2017 May;38(5):580-94. DOI: 10.1017/ice.2017.42 External link
349.
Holland T, Fowler VG Jr, Shelburne SA 3rd. Invasive gram-positive bacterial infection in cancer patients. Clin Infect Dis. 2014 Nov;59 Suppl 5:S331-4. DOI: 10.1093/cid/ciu598 External link
350.
Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013 Sep;13(9):785-96. DOI: 10.1016/S1473-3099(13)70190-7 External link
351.
Trubiano JA, Worth LJ, Thursky KA, Slavin MA. The prevention and management of infections due to multidrug resistant organisms in haematology patients. Br J Clin Pharmacol. 2015 Feb;79(2):195-207. DOI: 10.1111/bcp.12310 External link
352.
Heidenreich D, Kreil S, Jawhar M, Müller N, Nolte F, Becker KP, Miethke T, Hofmann WK, Klein SA. Course of colonization by multidrug-resistant organisms after allogeneic hematopoietic cell transplantation. Ann Hematol. 2018 Dec;97(12):2501-8. DOI: 10.1007/s00277-018-3475-6 External link
353.
Heidenreich D, Kreil S, Nolte F, Hofmann WK, Miethke T, Klein SA. Multidrug-resistant organisms in allogeneic hematopoietic cell transplantation. Eur J Haematol. 2017 May;98(5):485-92. DOI: 10.1111/ejh.12859 External link
354.
Bartoletti M, Giannella M, Tedeschi S, Viale P. Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect Dis Clin North Am. 2018 Sep;32(3):551-80. DOI: 10.1016/j.idc.2018.04.004 External link
355.
Rohde AM, Wiese-Posselt M, Zweigner J, Schwab F, Mischnik A, Seifert H, Gastmeier P, Kern WV; DZIF-ATHOS Study Group. High admission prevalence of fluoroquinolone resistance in third-generation cephalosporin-resistant Enterobacteriaceae in German university hospitals. J Antimicrob Chemother. 2018 Jun;73(6):1688-91. DOI: 10.1093/jac/dky040 External link
356.
Seo GH, Kim MJ, Seo S, Hwang B, Lee E, Yun Y, Choi M, Kim M, Kim JW, Kim ES, Kim HB, Song KH. Cancer-specific incidence rates of tuberculosis: A 5-year nationwide population-based study in a country with an intermediate tuberculosis burden. Medicine (Baltimore). 2016 Sep;95(38):e4919. DOI: 10.1097/MD.0000000000004919 External link
357.
Simonsen DF FD, Horsburgh CR. Increased risk of active tuberculosis after cancer diagnosis. J Infect Chemother. 2017;74:590-8. DOI: 10.1016/j.jinf.2017.03.012 External link
358.
Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Aspekte der mikrobiologischen Diagnostik im Rahmen der Prävention von nosokomialen Infektionen. Epid Bull. 2013;(19):171-2.
359.
Neumann S, Krause SW, Maschmeyer G, Schiel X, von Lilienfeld-Toal M; Infectious Diseases Working Party (AGIHO); German Society of Hematology and Oncology (DGHO). Primary prophylaxis of bacterial infections and Pneumocystis jirovecii pneumonia in patients with hematological malignancies and solid tumors : guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2013 Apr;92(4):433-42. DOI: 10.1007/s00277-013-1698-0 External link
360.
Baden LR, Swaminathan S, Angarone M, Blouin G, Camins BC, Casper C, Cooper B, Dubberke ER, Engemann AM, Freifeld AG, Greene JN, Ito JI, Kaul DR, Lustberg ME, Montoya JG, Rolston K, Satyanarayana G, Segal B, Seo SK, Shoham S, Taplitz R, Topal J, Wilson JW, Hoffmann KG, Smith C. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016 Jul;14(7):882-913. DOI: 10.6004/jnccn.2016.0093 External link
361.
Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, Sharland M, Rajendran NB, Rodríguez-Baño J; EPI-Net COMBACTE-MAGNET Group. Surveillance for control of antimicrobial resistance. Lancet Infect Dis. 2018 Mar;18(3):e99-e106. DOI: 10.1016/S1473-3099(17)30485-1 External link
362.
Rangaraj G, Granwehr BP, Jiang Y, Hachem R, Raad I. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010 Feb;116(4):967-73. DOI: 10.1002/cncr.24812 External link
363.
Mikulska M, Cordonnier C. Fluoroquinolone prophylaxis during neutropenia: what can we expect nowadays? Clin Microbiol Infect. 2018 Jul;24(7):678-9. DOI: 10.1016/j.cmi.2018.02.031 External link
364.
Verlinden A, Jansens H, Goossens H, van de Velde AL, Schroyens WA, Berneman ZN, Gadisseur AP. Clinical and microbiological impact of discontinuation of fluoroquinolone prophylaxis in patients with prolonged profound neutropenia. Eur J Haematol. 2014 Oct;93(4):302-8. DOI: 10.1111/ejh.12345 External link
365.
Haeusler GM, Slavin MA. Fluoroquinolone prophylaxis: worth the cost? Leuk Lymphoma. 2013 Apr;54(4):677-8. DOI: 10.3109/10428194.2012.736988 External link
366.
Saini L, Rostein C, Atenafu EG, Brandwein JM. Ambulatory consolidation chemotherapy for acute myeloid leukemia with antibacterial prophylaxis is associated with frequent bacteremia and the emergence of fluoroquinolone resistant E. Coli. BMC Infect Dis. 2013 Jun;13:284. DOI: 10.1186/1471-2334-13-284 External link
367.
Lehrnbecher T, Fisher BT, Phillips B, Alexander S, Ammann RA, Beauchemin M, Carlesse F, Castagnola E, Davis BL, Dupuis LL, Egan G, Groll AH, Haeusler GM, Santolaya M, Steinbach WJ, van de Wetering M, Wolf J, Cabral S, Robinson PD, Sung L. Guideline for Antibacterial Prophylaxis Administration in Pediatric Cancer and Hematopoietic Stem Cell Transplantation. Clin Infect Dis. 2020 Jun;71(1):226-36. DOI: 10.1093/cid/ciz1082 External link
368.
Egan G, Robinson PD, Martinez JPD, Alexander S, Ammann RA, Dupuis LL, Fisher BT, Lehrnbecher T, Phillips B, Cabral S, Tomlinson G, Sung L. Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients: A systematic review of randomized trials. Cancer Med. 2019 Aug;8(10):4536-46. DOI: 10.1002/cam4.2395 External link
369.
Elishoov H, Or R, Strauss N, Engelhard D. Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine (Baltimore). 1998 Mar;77(2):83-101. DOI: 10.1097/00005792-199803000-00002 External link
370.
Cohen ML, Murphy MT, Counts GW, Buckner CD, Clift RA, Meyers JD. Prediction by surveillance cultures of bacteremia among neutropenic patients treated in a protective environment. J Infect Dis. 1983;147(5):789-93.
371.
Daw MA, Munnelly P, McCann SR, Daly PA, Falkiner FR, Keane CT. Value of surveillance cultures in the management of neutropenic patients. Eur J Clin Microbiol Infect Dis. 1988 Dec;7(6):742-7. DOI: 10.1007/BF01975040 External link
372.
de Jong PJ, de Jong MD, Kuijper EJ, van der Lelie H. The value of surveillance cultures in neutropenic patients receiving selective intestinal decontamination. Scand J Infect Dis. 1993;25(1):107-13.
373.
Feld R. The role of surveillance cultures in patients likely to develop chemotherapy-induced mucositis. Support Care Cancer. 1997 Sep;5(5):371-5. DOI: 10.1007/s005200050094 External link
374.
Baier C, Linderkamp C, Beilken A, Thol F, Heuser M, Ebadi E, Ganzenmueller T, Heim A, Bange FC. Influenza and respiratory syncytial virus screening for the detection of asymptomatically infected patients in hematology and oncology. GMS Hyg Infect Control. 2018 Sep 24;13:Doc08. DOI: 10.3205/dgkh000314 External link
375.
Hermann B, Lehners N, Brodhun M, Boden K, Hochhaus A, Kochanek M, Meckel K, Mayer K, Rachow T, Rieger C, Schalk E, Weber T, Schmeier-Jürchott A, Schlattmann P, Teschner D, von Lilienfeld-Toal M. Influenza virus infections in patients with malignancies -- characteristics and outcome of the season 2014/15. A survey conducted by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO). Eur J Clin Microbiol Infect Dis. 2017 Mar;36(3):565-73. DOI: 10.1007/s10096-016-2833-3 External link
376.
French CE, McKenzie BC, Coope C, Rajanaidu S, Paranthaman K, Pebody R, Nguyen-Van-Tam JS; Noso-RSV Study GroupHiggins JP, Beck CR. Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: a systematic review. Influenza Other Respir Viruses. 2016 Jul;10(4):268-90. DOI: 10.1111/irv.12379 External link
377.
RSV Outbreak Investigation Team. Contributing and Terminating Factors of a Large RSV Outbreak in an Adult Hematology and Transplant Unit. PLoS Curr. 2014 Sep 19;6:ecurrents.outbreaks.3bc85b2a508d205ecc4a5534ecb1f9be. DOI: 10.1371/currents.outbreaks.3bc85b2a508d205ecc4a5534ecb1f9be External link
378.
Inkster T, Ferguson K, Edwardson A, Gunson R, Soutar R. Consecutive yearly outbreaks of respiratory syncytial virus in a haemato-oncology ward and efficacy of infection control measures. J Hosp Infect. 2017;96(4):353-9.
379.
Jensen TO, Stelzer-Braid S, Willenborg C, Cheung C, Andresen D, Rawlinson W, Clezy K. Outbreak of respiratory syncytial virus (RSV) infection in immunocompromised adults on a hematology ward. J Med Virol. 2016 Oct;88(10):1827-31. DOI: 10.1002/jmv.24521 External link
380.
Gudiol C, Verdaguer R, Angeles Dominguez M, Fernandez-Sevilla A, Carratala J. Outbreak of Legionnaires’ disease in immunosuppressed patients at a cancer centre: usefulness of universal urine antigen testing and early levofloxacin therapy. Clin Microbiol Infect. 2007;13(11):1125-8.
381.
Deutsche Gesellschaft für Pädiatrische Infektiologie (DGPI). S2k Leitlinie „Antibiotic Stewardship – Konzeption und Umsetzung in der stationären Kinder- und Jugendmedizin“. AWMF-Registernummer 048/15. AWMF; 2018 [cited 2020 Nov 01]. Available from: https://www.awmf.org/uploads/tx_szleitlinien/048-015l_S2k_Antibiotic-Stewardship-ABS-Konzeption-Umsetzung-stationaere-Kinder-Jugendmedizin_2019-06.pdf External link
382.
de With K, Wilke K, Kern WV, Strauß R, Kramme E, Friedrichs A, s Holzmann T, Geiss HK, Isner C, Fellhauer M, von Ameln-Mayerhofer A, Abele-Horn M, Häcker G, Walger P, Deja M, Vehreschild JJ, Kather A, Friese E, Porsche U, Janata O, Krause R, Wechsler-Fördös A. S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092-001 – update 2018 (Stand: 31.01.2019). AWMF; 2019 [cited 2020 Nov 01]. Available from: https://www.awmf.org/uploads/tx_szleitlinien/092-001l_S3_Strategien-zur-Sicherung-rationaler-Antibiotika-Anwendung-im-Krankenhaus_2020-02.pdf External link
383.
Dik JH, Poelman R, Friedrich AW, Niesters HGM, Rossen JWA, Sinha B. Integrated Stewardship Model Comprising Antimicrobial, Infection Prevention, and Diagnostic Stewardship (AID Stewardship). J Clin Microbiol. 2017;55(11):3306-7. DOI: 10.1128/JCM.01283-17 External link
384.
Dik JW, Poelman R, Friedrich AW, Panday PN, Lo-Ten-Foe JR, van Assen S, van Gemert-Pijnen JE, Niesters HG, Hendrix R, Sinha B. An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiol. 2016;11(1):93-102. DOI: 10.2217/fmb.15.99 External link
385.
Manning ML, Septimus EJ, Ashley ESD, Cosgrove SE, Fakih MG, Schweon SJ, Myers FE, Moody JA. Antimicrobial Stewardship and Infection Prevention-Leveraging the Synergy: A Position Paper Update. Infect Control Hosp Epidemiol. 2018 Apr;39(4):467-72. DOI: 10.1017/ice.2018.33 External link
386.
Mielke M. Die Rolle der Infektionsprävention bei der Eindämmung der Antibiotikaresistenzentwicklung. Jede vermiedene Infektion trägt zur Reduktion des Antibiotikaeinsatzes bei. Bundesgesundheitsbl. 2018;61(5):553-61.
387.
Septimus EJ. Antimicrobial Resistance: An Antimicrobial/Diagnostic Stewardship and Infection Prevention Approach. Med Clin North Am. 2018 Sep;102(5):819-29. DOI: 10.1016/j.mcna.2018.04.005 External link
388.
Schelenz S, Nwaka D, Hunter PR. Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J Antimicrob Chemother. 2013;68(6):1431-8.
389.
Iacob S, Iacob DG. Infectious Threats, the Intestinal Barrier, and Its Trojan Horse: Dysbiosis. Front Microbiol. 2019;10:1676. DOI: 10.3389/fmicb.2019.01676 External link
390.
Araoka H, Fujii T, Izutsu K, Kimura M, Nishida A, Ishiwata K, Nakano N, Tsuji M, Yamamoto H, Asano-Mori Y, Uchida N, Wake A, Taniguchi S, Yoneyama A. Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis. 2012 Aug;14(4):355-63. DOI: 10.1111/j.1399-3062.2011.00710.x External link
391.
Arnan M, Gudiol C, Calatayud L, Liñares J, Dominguez MÁ, Batlle M, Ribera JM, Carratalà J, Gudiol F. Risk factors for, and clinical relevance of, faecal extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis. 2011 Mar;30(3):355-60. DOI: 10.1007/s10096-010-1093-x External link
392.
Averbuch D, Avaky C, Harit M, Stepensky P, Fried I, Ben-Ami T, Temper V, Peled Y, Troen H, Masarwa R, Abu Ahmad W, Weintraub M, Revel-Vilk S, Engelhard D. Non-fermentative Gram-negative rods bacteremia in children with cancer: a 14-year single-center experience. Infection. 2017 Jun;45(3):327-34. DOI: 10.1007/s15010-017-0988-1 External link
393.
Averbuch D, Cordonnier C, Livermore DM, Mikulska M, Orasch C, Viscoli C, Gyssens IC, Kern WV, Klyasova G, Marchetti O, Engelhard D, Akova M; ECIL4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica. 2013 Dec;98(12):1836-47. DOI: 10.3324/haematol.2013.091330 External link
394.
Bhusal Y, Mihu CN, Tarrand JJ, Rolston KV. Incidence of fluoroquinolone-resistant and extended-spectrum beta-lactamase-producing Escherichia coli at a comprehensive cancer center in the United States. Chemotherapy. 2011;57(4):335-8. DOI: 10.1159/000329661 External link
395.
Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012 Jan;25(1):2-41. DOI: 10.1128/CMR.00019-11 External link
396.
Carattoli A, Fortini D, Galetti R, Garcia-Fernandez A, Nardi G, Orazi D, Capone A, Majolino I, Proia A, Mariani B, Parisi G, Morrone A, Petrosillo N. Isolation of NDM-1-producing Pseudomonas aeruginosa sequence type ST235 from a stem cell transplant patient in Italy, May 2013. Euro Surveill. 2013 Nov;18(46). DOI: 10.2807/1560-7917.es2013.18.46.20633 External link
397.
Ciofi Degli Atti M, Bernaschi P, Carletti M, Luzzi I, García-Fernández A, Bertaina A, Sisto A, Locatelli F, Raponi M. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect Dis. 2014 Sep 10;14:494. DOI: 10.1186/1471-2334-14-494 External link
398.
Fukuta Y, Muder RR, Agha ME, Clarke LG, Wagener MM, Hensler AM, Doi Y. Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am J Infect Control. 2013 Dec;41(12):1249-52. DOI: 10.1016/j.ajic.2013.04.003 External link
399.
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018 Feb;41:76-82. DOI: 10.1016/j.mib.2017.11.030 External link
400.
Gudiol C, Bodro M, Simonetti A, Tubau F, González-Barca E, Cisnal M, Domingo-Domenech E, Jiménez L, Carratalà J. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013 May;19(5):474-9. DOI: 10.1111/j.1469-0691.2012.03879.x External link
401.
Gudiol C, Calatayud L, Garcia-Vidal C, Lora-Tamayo J, Cisnal M, Duarte R, Arnan M, Marin M, Carratalà J, Gudiol F. Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother. 2010 Feb;65(2):333-41. DOI: 10.1093/jac/dkp411 External link
402.
Haeusler GM, Mechinaud F, Daley AJ, Starr M, Shann F, Connell TG, Bryant PA, Donath S, Curtis N. Antibiotic-resistant Gram-negative bacteremia in pediatric oncology patients--risk factors and outcomes. Pediatr Infect Dis J. 2013 Jul;32(7):723-6. DOI: 10.1097/INF.0b013e31828aebc8 External link
403.
Kim SB, Min YH, Cheong JW, Kim JS, Kim SJ, Ku NS, Jeong SJ, Han SH, Choi JY, Song YG, Kim JM. Incidence and risk factors for carbapenem- and multidrug-resistant Acinetobacter baumannii bacteremia in hematopoietic stem cell transplantation recipients. Scand J Infect Dis. 2014 Feb;46(2):81-8. DOI: 10.3109/00365548.2013.857042 External link
404.
Perez F, Adachi J, Bonomo RA. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin Infect Dis. 2014 Nov;59 Suppl 5:S335-9. DOI: 10.1093/cid/ciu612 External link
405.
Snitkin ES, Zelazny AM, Thomas PJ, Stock F; NISC Comparative Sequencing Program GroupHenderson DK, Palmore TN, Segre JA. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012 Aug;4(148):148ra116. DOI: 10.1126/scitranslmed.3004129 External link
406.
Tada K, Kurosawa S, Hiramoto N, Okinaka K, Ueno N, Asakura Y, Kim SW, Yamashita T, Mori SI, Heike Y, Maeshima AM, Tanosaki R, Tobinai K, Fukuda T. Stenotrophomonas maltophilia infection in hematopoietic SCT recipients: high mortality due to pulmonary hemorrhage. Bone Marrow Transplant. 2013 Jan;48(1):74-9. DOI: 10.1038/bmt.2012.87 External link
407.
Tschudin-Sutter S, Lucet JC, Mutters NT, Tacconelli E, Zahar JR, Harbarth S. Contact Precautions for Preventing Nosocomial Transmission of Extended-Spectrum β Lactamase-Producing Escherichia coli: A Point/Counterpoint Review. Clin Infect Dis. 2017 Jul;65(2):342-7. DOI: 10.1093/cid/cix258 External link
408.
von Lilienfeld-Toal M, Maschmeyer G. Challenges in Infectious Diseases for Haematologists. Oncol Res Treat. 2018;41(6):406-10. DOI: 10.1159/000487439 External link
409.
Yeo CL, Chan DS, Earnest A, Wu TS, Yeoh SF, Lim R, Jureen R, Fisher D, Hsu LY. Prospective audit and feedback on antibiotic prescription in an adult hematology-oncology unit in Singapore. Eur J Clin Microbiol Infect Dis. 2012 Apr;31(4):583-90. DOI: 10.1007/s10096-011-1351-6 External link
410.
Yeo CL, Wu JE, Chung GW, Chan DS, Fisher D, Hsu LY. Specialist trainees on rotation cannot replace dedicated consultant clinicians for antimicrobial stewardship of specialty disciplines. Antimicrob Resist Infect Control. 2012 Nov;1(1):36. DOI: 10.1186/2047-2994-1-36 External link
411.
Trecarichi EM, Tumbarello M, Spanu T, Caira M, Fianchi L, Chiusolo P, Fadda G, Leone G, Cauda R, Pagano L. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect. 2009 Apr;58(4):299-307. DOI: 10.1016/j.jinf.2009.02.002 External link
412.
Aguiar EB, Maciel LC, Halpern M, de Lemos AS, Ferreira AL, Basto ST, Gonçalves RT, de Gouvêa EF, Santoro-Lopes G. Outcome of bacteremia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc. 2014 Jul-Aug;46(6):1753-6. DOI: 10.1016/j.transproceed.2014.05.003 External link
413.
Mikulska M, Del Bono V, Bruzzi P, Raiola AM, Gualandi F, Van Lint MT, Bacigalupo A, Viscoli C. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012 Jun;40(3):271-8. DOI: 10.1007/s15010-011-0229-y External link
414.
Tang Y, Wu X, Cheng Q, Li X. Inappropriate initial antimicrobial therapy for hematological malignancies patients with Gram-negative bloodstream infections. Infection. 2020 Feb;48(1):109-16. DOI: 10.1007/s15010-019-01370-x External link
415.
Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, Lieberman SR, Jay HV, Ahr KF, Porosnicu Rodriguez KA, Xu K, Calarfiore M, Poeck H, Caballero S, Devlin SM, Rapaport F, Dudakov JA, Hanash AM, Gyurkocza B, Murphy GF, Gomes C, Liu C, Moss EL, Falconer SB, Bhatt AS, Taur Y, Pamer EG, van den Brink MRM, Jenq RR. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016 May;8(339):339ra71. DOI: 10.1126/scitranslmed.aaf2311 External link
416.
Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota – a systematic review. J Infect. 2019 Dec;79(6):471-89. DOI: 10.1016/j.jinf.2019.10.008 External link
417.
Palacios-Baena ZR, Gutiérrez-Gutiérrez B, Calbo E, Almirante B, Viale P, Oliver A, Pintado V, Gasch O, Martínez-Martínez L, Pitout J, Akova M, Peña C, Molina Gil-Bermejo J, Hernández A, Venditti M, Prim N, Bou G, Tacconelli E, Tumbarello M, Hamprecht A, Giamarellou H, Almela M, Pérez F, Schwaber MJ, Bermejo J, Lowman W, Hsueh PR, Paño-Pardo JR, Torre-Cisneros J, Souli M, Bonomo RA, Carmeli Y, Paterson DL, Pascual Á, Rodríguez-Baño J; Spanish Network for Research in Infectious Diseases (REIPI)/European Study Group of Bloodstream Infections and Sepsis (ESGBIS)/INCREMENT Group. Empiric Therapy With Carbapenem-Sparing Regimens for Bloodstream Infections due to Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: Results From the INCREMENT Cohort. Clin Infect Dis. 2017 Oct 30;65(10):1615-23. DOI: 10.1093/cid/cix606 External link
418.
Short E, Esterly J, Postelnick M, Ong J, McLaughlin M. Disposition of linezolid or daptomycin in Enterococcal bloodstream infections according to vancomycin resistant Enterococcus colonization. Antimicrob Resist Infect Control. 2014;3(1):37. DOI: 10.1186/2047-2994-3-37 External link
419.
Kamboj M, Cohen N, Huang YT, Kerpelev M, Jakubowski A, Sepkowitz KA, Papanicolaou GA, Seo SK. Impact of Empiric Treatment for Vancomycin-Resistant Enterococcus in Colonized Patients Early after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019 Mar;25(3):594-8. DOI: 10.1016/j.bbmt.2018.11.008 External link
420.
Cervantes J. Use your antibiotics wisely. Consequences to the intestinal microbiome. FEMS Microbiol Lett. 2016;363(10):fnw081.
421.
Martinez-Nadal G, Puerta-Alcalde P, Gudiol C, Cardozo C, Albasanz-Puig A, Marco F, Laporte-Amargós J, Moreno-García E, Domingo-Doménech E, Chumbita M, Martínez JA, Soriano A, Carratalà J, Garcia-Vidal C. Inappropriate Empirical Antibiotic Treatment in High-risk Neutropenic Patients With Bacteremia in the Era of Multidrug Resistance. Clin Infect Dis. 2020 Mar;70(6):1068-74. DOI: 10.1093/cid/ciz319 External link
422.
Trubiano JA, Beekmann SE, Worth LJ, Polgreen PM, Thursky KA, Slavin MA, Grayson ML, Phillips EJ. Improving Antimicrobial Stewardship by Antibiotic Allergy Delabeling: Evaluation of Knowledge, Attitude, and Practices Throughout the Emerging Infections Network. Open Forum Infect Dis. 2016 Sep;3(3):ofw153. DOI: 10.1093/ofid/ofw153 External link
423.
Trubiano JA, Chen C, Cheng AC, Grayson ML, Slavin MA, Thursky KA; National Antimicrobial Prescribing Survey (NAPS). Antimicrobial allergy ‘labels’ drive inappropriate antimicrobial prescribing: lessons for stewardship. J Antimicrob Chemother. 2016 Jun;71(6):1715-22. DOI: 10.1093/jac/dkw008 External link
424.
Trubiano JA, Slavin MA, Thursky KA, Grayson ML, Phillips EJ. Beta-Lactam and Sulfonamide Allergy Testing Should Be a Standard of Care in Immunocompromised Hosts. J Allergy Clin Immunol Pract. 2019 Sep-Oct;7(7):2151-3. DOI: 10.1016/j.jaip.2019.05.051 External link
425.
Stover KR, Barber KE, Wagner JL. Allergic Reactions and Cross-Reactivity Potential with Beta-Lactamase Inhibitors. Pharmacy (Basel). 2019 Jun 28;7(3):77. DOI: 10.3390/pharmacy7030077 External link
426.
Stover KR, Bland CM, Gallagher JC; Society of Infectious Diseases Pharmacists. The Point of Antimicrobial Susceptibility Testing Is to Inform Antimicrobial Prescribing. Clin Infect Dis. 2017 Jan;64(1):103-4. DOI: 10.1093/cid/ciw686 External link
427.
Stone CA Jr, Trubiano J, Coleman DT, Rukasin CRF, Phillips EJ. The challenge of de-labeling penicillin allergy. Allergy. 2020 Feb;75(2):273-88. DOI: 10.1111/all.13848 External link
428.
Huang KG, Cluzet V, Hamilton K, Fadugba O. The Impact of Reported Beta-Lactam Allergy in Hospitalized Patients With Hematologic Malignancies Requiring Antibiotics. Clin Infect Dis. 2018 Jun;67(1):27-33. DOI: 10.1093/cid/ciy037 External link
429.
Agrawal S, Barnes R, Brüggemann RJ, Rautemaa-Richardson R, Warris A. The role of the multidisciplinary team in antifungal stewardship. J Antimicrob Chemother. 2016 Nov;71(suppl 2):ii37-ii42. DOI: 10.1093/jac/dkw395 External link
430.
Aguado JM, Silva JT, Bouza E. Conclusion and future perspectives on antifungal stewardship. J Antimicrob Chemother. 2016 Nov;71(suppl 2):ii43-4. DOI: 10.1093/jac/dkw396 External link
431.
Farmakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management. Int J Antimicrob Agents. 2017 Sep;50(3):318-24. DOI: 10.1016/j.ijantimicag.2017.05.019 External link
432.
Hamdy RF, Zaoutis TE, Seo SK. Antifungal stewardship considerations for adults and pediatrics. Virulence. 2017 Aug;8(6):658-72. DOI: 10.1080/21505594.2016.1226721 External link
433.
Lachenmayr SJ, Berking S, Horns H, Strobach D, Ostermann H, Berger K. Antifungal treatment in haematological and oncological patients: Need for quality assessment in routine care. Mycoses. 2018 Jul;61(7):464-71. DOI: 10.1111/myc.12768 External link
434.
Mellinghoff SC, Hartmann P, Cornely FB, Knauth L, Köhler F, Köhler P, Krause C, Kronenberg C, Kranz SL, Menon V, Müller H, Naendrup JH, Pützfeld S, Ronge A, Rutz J, Seidel D, Wisplinghoff H, Cornely OA. Analyzing candidemia guideline adherence identifies opportunities for antifungal stewardship. Eur J Clin Microbiol Infect Dis. 2018 Aug;37(8):1563-71. DOI: 10.1007/s10096-018-3285-8 External link
435.
Micallef C, Aliyu SH, Santos R, Brown NM, Rosembert D, Enoch DA. Introduction of an antifungal stewardship programme targeting high-cost antifungals at a tertiary hospital in Cambridge, England. J Antimicrob Chemother. 2015;70(6):1908-11.
436.
Micallef C, Ashiru-Oredope D, Hansraj S, Denning DW, Agrawal SG, Manuel RJ, Schelenz S, Guy R, Muller-Pebody B, Patel R, Howard P, Hopkins S, Johnson E, Enoch DA. An investigation of antifungal stewardship programmes in England. J Med Microbiol. 2017 Nov;66(11):1581-9. DOI: 10.1099/jmm.0.000612 External link
437.
Muñoz P, Bouza E; COMIC (Collaboration Group on Mycosis) study group. The current treatment landscape: the need for antifungal stewardship programmes. J Antimicrob Chemother. 2016 11;71(suppl 2):ii5-ii12. DOI: 10.1093/jac/dkw391 External link
438.
Ruhnke M. Antifungal stewardship in invasive Candida infections. Clin Microbiol Infect. 2014 Jun;20 Suppl 6:11-8. DOI: 10.1111/1469-0691.12622 External link
439.
Schwartz IS, Patterson TF. The Emerging Threat of Antifungal Resistance in Transplant Infectious Diseases. Curr Infect Dis Rep. 2018 Feb;20(3):2. DOI: 10.1007/s11908-018-0608-y External link
440.
Valerio M, Muñoz P, Rodríguez-González C, Sanjurjo M, Guinea J, Bouza E; COMIC study group (Collaborative group on Mycosis). Training should be the first step toward an antifungal stewardship program. Enferm Infecc Microbiol Clin. 2015 Apr;33(4):221-7. DOI: 10.1016/j.eimc.2014.04.016 External link
441.
Valerio M, Muñoz P, Rodríguez CG, Caliz B, Padilla B, Fernández-Cruz A, Sánchez-Somolinos M, Gijón P, Peral J, Gayoso J, Frias I, Salcedo M, Sanjurjo M, Bouza E; COMIC Study Group Collaborative Group on Mycosis. Antifungal stewardship in a tertiary-care institution: a bedside intervention. Clin Microbiol Infect. 2015 May;21(5):492.e1-9. DOI: 10.1016/j.cmi.2015.01.013 External link
442.
Valerio M, Rodriguez-Gonzalez CG, Muñoz P, Caliz B, Sanjurjo M, Bouza E; COMIC Study Group (Collaborative Group on Mycoses). Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother. 2014 Jul;69(7):1993-9. DOI: 10.1093/jac/dku053 External link
443.
Valerio M, Vena A, Bouza E, Reiter N, Viale P, Hochreiter M, Giannella M, Muñoz P; COMIC study group (Collaborative group on Mycosis). How much European prescribing physicians know about invasive fungal infections management? BMC Infect Dis. 2015 Feb;15:80. DOI: 10.1186/s12879-015-0809-z External link
444.
Wattal C, Chakrabarti A, Oberoi JK, Donnelly JP, Barnes RA, Sherwal BL, Goel N, Saxena S, Varghese GM, Soman R, Loomba P, Tarai B, Singhal S, Mehta N, Ramasubramanian V, Choudhary D, Mehta Y, Ghosh S, Muralidhar S, Kaur R. Issues in antifungal stewardship: an opportunity that should not be lost. J Antimicrob Chemother. 2017 Apr 1;72(4):969-74. DOI: 10.1093/jac/dkw506 External link
445.
Lachenmayr SJ, Strobach D, Berking S, Horns H, Berger K, Ostermann H. Improving quality of antifungal use through antifungal stewardship interventions. Infection. 2019 Aug;47(4):603-10. DOI: 10.1007/s15010-019-01288-4 External link
446.
Seo SK, Lo K, Abbo LM. Current State of Antimicrobial Stewardship at Solid Organ and Hematopoietic Cell Transplant Centers in the United States. Infect Control Hosp Epidemiol. 2016 Oct;37(10):1195-200. DOI: 10.1017/ice.2016.149 External link
447.
Abbo LM, Ariza-Heredia EJ. Antimicrobial stewardship in immunocompromised hosts. Infect Dis Clin North Am. 2014 Jun;28(2):263-79. DOI: 10.1016/j.idc.2014.01.008 External link
448.
Cordonnier C, Pautas C, Maury S, Vekhoff A, Farhat H, Suarez F, Dhédin N, Isnard F, Ades L, Kuhnowski F, Foulet F, Kuentz M, Maison P, Bretagne S, Schwarzinger M. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009 Apr;48(8):1042-51. DOI: 10.1086/597395 External link
449.
Cordonnier C, Robin C, Alanio A, Bretagne S. Antifungal pre-emptive strategy for high-risk neutropenic patients: why the story is still ongoing. Clin Microbiol Infect. 2014 Jun;20 Suppl 6:27-35. DOI: 10.1111/1469-0691.12428 External link
450.
Dumford DM 3rd, Skalweit M. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host. Infect Dis Clin North Am. 2016 Jun;30(2):465-89. DOI: 10.1016/j.idc.2016.02.008 External link
451.
Gyssens IC, Kern WV, Livermore DM; ECIL-4, a joint venture of EBMT, EORTC, ICHS and ESGICH of ESCMID. The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica. 2013 Dec;98(12):1821-5. DOI: 10.3324/haematol.2013.091769 External link
452.
Hamandi B, Husain S, Humar A, Papadimitropoulos EA. Impact of infectious disease consultation on the clinical and economic outcomes of solid organ transplant recipients admitted for infectious complications. Clin Infect Dis. 2014 Oct;59(8):1074-82. DOI: 10.1093/cid/ciu522 External link
453.
la Martire G, Robin C, Oubaya N, Lepeule R, Beckerich F, Leclerc M, Barhoumi W, Toma A, Pautas C, Maury S, Akrout W, Cordonnier-Jourdin C, Fihman V, Venditti M, Cordonnier C. De-escalation and discontinuation strategies in high-risk neutropenic patients: an interrupted time series analyses of antimicrobial consumption and impact on outcome. Eur J Clin Microbiol Infect Dis. 2018 Oct;37(10):1931-40. DOI: 10.1007/s10096-018-3328-1 External link
454.
Lortholary O, Lefort A, Tod M, Chomat AM, Darras-Joly C, Cordonnier C; Club de Reflexion sur les Infections en Onco-Hématologie. Pharmacodynamics and pharmacokinetics of antibacterial drugs in the management of febrile neutropenia. Lancet Infect Dis. 2008 Oct;8(10):612-20. DOI: 10.1016/S1473-3099(08)70228-7 External link
455.
Mokart D, Slehofer G, Lambert J, Sannini A, Chow-Chine L, Brun JP, Berger P, Duran S, Faucher M, Blache JL, Saillard C, Vey N, Leone M. De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med. 2014 Jan;40(1):41-9. DOI: 10.1007/s00134-013-3148-9 External link
456.
Paskovaty A, Pastores SM, Gedrimaite Z, Kostelecky N, Riedel ER, Seo SK. Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med. 2015 Nov;41(11):2022-3. DOI: 10.1007/s00134-015-4016-6 External link
457.
Reinecke J, Lowas S, Snowden J, Neemann K. Blood Stream Infections and Antibiotic Utilization in Pediatric Leukemia Patients With Febrile Neutropenia. J Pediatr Hematol Oncol. 2019 May;41(4):251-5. DOI: 10.1097/MPH.0000000000001279 External link
458.
Rosa R, Simkins J, Camargo JF, Martinez O, Abbo LM. Solid organ transplant antibiograms: an opportunity for antimicrobial stewardship. Diagn Microbiol Infect Dis. 2016 Dec;86(4):460-3. DOI: 10.1016/j.diagmicrobio.2016.08.018 External link
459.
Rosa RG, Dos Santos RP, Goldani LZ. Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: A cohort study. Can J Infect Dis Med Microbiol. 2014;25(1):e14-7. DOI: 10.1155/2014/702621 External link
460.
Rosa RG, Goldani LZ. Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia. Antimicrob Agents Chemother. 2014 Jul;58(7):3799-803. DOI: 10.1128/AAC.02561-14 External link
461.
Rosa RG, Goldani LZ, dos Santos RP. Association between adherence to an antimicrobial stewardship program and mortality among hospitalised cancer patients with febrile neutropaenia: a prospective cohort study. BMC Infect Dis. 2014;14:286. DOI: 10.1186/1471-2334-14-286 External link
462.
Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012 Aug;32(8):722-34. DOI: 10.1002/j.1875-9114.2012.01162.x External link
463.
Vicente M, Al-Nahedh M, Parsad S, Knoebel RW, Pisano J, Pettit NN. Impact of a clinical pathway on appropriate empiric vancomycin use in cancer patients with febrile neutropenia. J Oncol Pharm Pract. 2017 Dec;23(8):575-81. DOI: 10.1177/1078155216668672 External link
464.
Wattier RL, Levy ER, Sabnis AJ, Dvorak CC, Auerbach AD. Reducing Second Gram-Negative Antibiotic Therapy on Pediatric Oncology and Hematopoietic Stem Cell Transplantation Services. Infect Control Hosp Epidemiol. 2017 Sep;38(9):1039-47. DOI: 10.1017/ice.2017.118 External link
465.
Zhu LL, Zhou Q. Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist. 2018;11:1105-17. DOI: 10.2147/IDR.S167616 External link
466.
Robilotti E, Holubar M, Seo SK, Deresinski S. Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis. 2017 Aug;30(4):346-53. DOI: 10.1097/QCO.0000000000000380 External link
467.
Puerta-Alcalde P, Cardozo C, Suárez-Lledó M, Rodríguez-Núñez O, Morata L, Fehér C, Marco F, Del Río A, Martínez JA, Mensa J, Rovira M, Esteve J, Soriano A, Garcia-Vidal C. Current time-to-positivity of blood cultures in febrile neutropenia: a tool to be used in stewardship de-escalation strategies. Clin Microbiol Infect. 2019 Apr;25(4):447-53. DOI: 10.1016/j.cmi.2018.07.026 External link
468.
Abele-Horn M, de With K, Seifert J, Eckmanns T, Schmidt N, Fellhauer M, Häcker G, Kern W, Liese J, Walger P. Strukturelle und personelle Voraussetzungen für die Sicherung einer rationalen Antiinfektivaverordnung in Krankenhäusern. Bundesgesundheitsbl. 2020;63(6):749-60.
469.
Sax H, Clack L, Touveneau S, Jantarada Fda L, Pittet D, Zingg W; PROHIBIT study group. Implementation of infection control best practice in intensive care units throughout Europe: a mixed-method evaluation study. Implement Sci. 2013 Feb;8:24. DOI: 10.1186/1748-5908-8-24 External link
470.
Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, Price L, Egger M, Grayson ML, Kelley E, Allegranzi B; WHO Guidelines Development Group. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrob Resist Infect Control. 2017;6:6. DOI: 10.1186/s13756-016-0149-9 External link
471.
Goff DA, Kullar R, Bauer KA, File TM Jr. Eight Habits of Highly Effective Antimicrobial Stewardship Programs to Meet the Joint Commission Standards for Hospitals. Clin Infect Dis. 2017 Apr;64(8):1134-9. DOI: 10.1093/cid/cix065 External link
472.
Kern WV, Fellhauer M, Hug M, Hoppe-Tichy T, Först G, Steib-Bauert M, de With K. Antibiotika-Anwendung 2012/13 in 109 deutschen Akutkrankenhäusern [Recent antibiotic use in German acute care hospitals – from benchmarking to improved prescribing and quality care]. Dtsch Med Wochenschr. 2015 Nov;140(23):e237-46. DOI: 10.1055/s-0041-105938 External link
473.
Thern J, de With K, Strauss R, Steib-Bauert M, Weber N, Kern WV. Selection of hospital antimicrobial prescribing quality indicators: a consensus among German antibiotic stewardship (ABS) networkers. Infection. 2014 Apr;42(2):351-62. DOI: 10.1007/s15010-013-0559-z External link
474.
Davies HD; Committee on Infectious Diseases. Infectious Complications With the Use of Biologic Response Modifiers in Infants and Children. Pediatrics. 2016 Aug;138(2):e20161209. doi: 10.1542/peds.2016-1209 External link
475.
Reinwald M, Silva JT, Mueller NJ, Fortún J, Garzoni C, de Fijter JW, Fernández-Ruiz M, Grossi P, Aguado JM. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect. 2018 Jun;24(Suppl 2):S53-S70. DOI: 10.1016/j.cmi.2018.02.009 External link
476.
Baddley JW, Cantini F, Goletti D, Gómez-Reino JJ, Mylonakis E, San-Juan R, Fernández-Ruiz M, Torre-Cisneros J. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-α agents). Clin Microbiol Infect. 2018 Jun;24(Suppl 2):S10-S20. DOI: 10.1016/j.cmi.2017.12.025 External link
477.
Drgona L, Gudiol C, Lanini S, Salzberger B, Ippolito G, Mikulska M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin Microbiol Infect. 2018;24(Suppl 2):S83-94.
478.
Mikulska M, Lanini S, Gudiol C, Drgona L, Ippolito G, Fernández-Ruiz M, Salzberger B. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin Microbiol Infect. 2018 Jun;24(Suppl 2):S71-S82. DOI: 10.1016/j.cmi.2018.02.003 External link
479.
Ioannou P, Vamvoukaki R, Samonis G. Rhodotorula species infections in humans: A systematic review. Mycoses. 2019 Feb;62(2):90-100. DOI: 10.1111/myc.12856 External link
480.
Potenza L, Chitasombat MN, Klimko N, Bettelli F, Dragonetti G, Del Principe MI, Nucci M, Busca A, Fracchiolla N, Sciumè M, Spolzino A, Delia M, Mancini V, Nadali GP, Dargenio M, Shadrivova O, Bacchelli F, Aversa F, Sanguinetti M, Luppi M, Kontoyiannis DP, Pagano L. Rhodotorula infection in haematological patient: Risk factors and outcome. Mycoses. 2019 Mar;62(3):223-9. DOI: 10.1111/myc.12875 External link
481.
Fabiani S, Fortunato S, Petrini M, Bruschi F. Allogeneic hematopoietic stem cell transplant recipients and parasitic diseases: A review of the literature of clinical cases and perspectives to screen and follow-up active and latent chronic infections. Transpl Infect Dis. 2017 Apr;19(2). DOI: 10.1111/tid.12669 External link
482.
Peixoto D, Prestes DP. Parasitic Infections of the Stem Cell Transplant Recipient and the Hematologic Malignancy Patient, Including Toxoplasmosis and Strongyloidiasis. Infect Dis Clin North Am. 2019 Jun;33(2):567-91. DOI: 10.1016/j.idc.2019.02.009 External link
483.
Michel BA, Hunder GG, Bloch DA, Calabrese LH. Hypersensitivity vasculitis and Henoch-Schönlein purpura: a comparison between the 2 disorders. J Rheumatol. 1992 May;19(5):721-8.
484.
Chang HJ, Miller HL, Watkins N, Arduino MJ, Ashford DA, Midgley G, Aguero SM, Pinto-Powell R, von Reyn CF, Edwards W, McNeil MM, Jarvis WR. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. N Engl J Med. 1998 Mar 12;338(11):706-11. DOI: 10.1056/NEJM199803123381102 External link
485.
Bundeszentrale für gesundheitliche Aufklärung (BZgA). Hygiene und Tiere. [cited 2020 Nov 01]. Available from: https://www.infektionsschutz.de/hygienetipps/hygiene-und-tiere.html External link
486.
Institut für Hygiene und Öffentliche Gesundheit der Universität Bonn. Hygiene-Tipps für Kids – Umgang mit Tieren. Bonn:Institut für Hygiene und Öffentliche Gesundheit (IHPH); 2007. [cited 2020 Nov 01]. Available from: https://hygiene-tipps-fuer-kids.de/files/download/pdf/Elternseiten/3_6_TiereMerkblatt.pdf External link