gms | German Medical Science

GMDS 2014: 59. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS)

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie

07. - 10.09.2014, Göttingen

Big Data Meets Health Care: The case for comparability and consistency

Meeting Abstract

Suche in Medline nach

  • C.G. Chute - Mayo Clinic College of Medicine, Rochester, MN, USA

GMDS 2014. 59. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Göttingen, 07.-10.09.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. DocAbstr. Keynote Mo I

doi: 10.3205/14gmds002, urn:nbn:de:0183-14gmds0025

Veröffentlicht: 4. September 2014

© 2014 Chute.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

The well-known phenomenon of “information explosion” has impacted virtually all areas of human enterprise, and healthcare has become no exception. While one might quibble whether more information is actually being created, there is no disagreement that vastly more information is being electronically captured and stored. Latent within the proliferation of such machine readable archives of information lay previously impractical metrics, capabilities for linkages and association, and ultimately new knowledge. The over-used moniker of “big data” is applied to the rise of vast, potentiallyfederated data sources, analytic methods for their interpretation, and emergent findings. Despite this non-precision, most observers agree that there is something new and different emergent in the opportunistic mining of disparate data on an unprecedented scale.

Examples of impressive inferences from big data abound in finance, marketing, education, social sciences, and economics. More focused, “big science” opportunities are self-evident in astronomy, physics, and arguably the discovery of the Higgs Boson (which really was inferred from perturbations observed across Exabytes of experimental particle-accelerator data). In biology and medicine the sweet spot has historically been in the human genome, where genotype-phenotype associations emerge from “genome-wide association studies” done at massive scale – more so in the present era of whole-genome sequencing.

The promise of best-evidence discovery, comparative effectiveness research, new outcomes analyses, adverse event discovery, and improved clinical care in general that might emerge from big-data methods applied to large, federated, clinical data repositories is intriguing. There is “gold in them hills”, and the potential benefits of wellconducted data mining must not be lightly dismissed.

However, caution must dominate an otherwise unfettered analysis of clinical information, as the consequences of skewed, biased, spurious, or otherwise “wrong” answers can have serious adverse impact. While most of us are quite content to have a target answer appear “on the page” of a Google search result, somehow having the right answer “on the list” but not chosen for healthcare interventions may be interpreted as malpractice in some litigious countries – not to mention likely sub-optimal outcomes for a patient. Clinical decision support resources may recommend a spectrum of options to a clinician – who presumably has the responsibility of synthesizing such advice and selecting the optimal path, though few would argue that the amount of information and the complexity of their interactions have long ago exceeded the unaided human capacity for cognition, reliable processing, or well-balanced interpretation. The importance of comparable and consistently represented clinical information, either at entry or through normalization to a canonical form, must remain as a necessary step before big-data methods can be meaningfully or safely applied to clinical data repositories.