gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2021)

26. - 29.10.2021, Berlin

Standardized fracture creation in the distal humerus and the olecranon for biomechanical testing and surgical training

Meeting Abstract

  • presenting/speaker Werner Schmölz - Medizinische Universität Innsbruck, Univ.-Klinik für Orthopädie und Traumatologie, Innsbruck, Austria
  • Philipp Zierleyn - Medizinische Universität Innsbruck, Univ.-Klinik für Orthopädie und Traumatologie, Innsbruck, Austria
  • Romed Hörmann - Institut für Klinisch-Funktionelle Anatomie, Innsbruck, Austria
  • Rohit Arora - Medizinische Universität Innsbruck, Univ.-Klinik für Orthopädie und Traumatologie, Innsbruck, Austria

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2021). Berlin, 26.-29.10.2021. Düsseldorf: German Medical Science GMS Publishing House; 2021. DocAB94-1193

doi: 10.3205/21dkou677, urn:nbn:de:0183-21dkou6778

Veröffentlicht: 26. Oktober 2021

© 2021 Schmölz et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Fragestellung: Surgical training and biomechanical testing of fracture treatment should ideally be conducted in models that realistically represent the in vivo situation. The aim of this work was to develop and test a method for the generation of distal humerus fractures and olecranon fractures in human cadaveric specimens while preserving the soft tissue envelope.

Methodik: 21 alcohol-glycerol-fixed cadaveric upper extremity specimens (7 female, 14 male) were used for this work. The humeri were cut to a standardized length and embedded in epoxy resin. Two different experimental setups for specimen fixation and load induction were developed, one to generate distal humerus fractures and one to generate olecranon fractures. For each of the two fracture types specimens were placed in a servohydraulic material testing machine and loading was induced via the embedding in a predefined load vector direction in displacement control (100mm/sec). The force required for fracturing, the corresponding displacement and the induced energy were determined of the force-displacement graphs. After successful verification of the fracture creation with fluoroscopy qCT imaging was performed. The fractures were classified according to AO-classification and trabecular bone mineral density (BMD) in the distal radius of the specimens was measured.

Ergebnisse und Schlussfolgerung: 11 distal humerus fractures and 10 olecranon fractures could be created. Nine distal humerus fractures were classified as AO Type C and two as type B. All olecranon fractures were classified as AO type B. Distal humerus fractures required significantly more load than olecranon fractures (6077 N ±1583 vs 4136 N ±2368, p=0.038) and absorbed more energy until fracture than olecranon fractures (17.8 J ±9.1 vs 11.7 J ±7.6, p=0.11), while the displacement at fracture was similar (5.8 mm ±1.6 vs 5.9 mm ±3.1, p=0.89). For both fracture types the maximum force showed a positive correlation with the measured BMD in the distal radius (humeri r=0.92, p<0.001; olecranon r=0.70, p<0.025).

The developed and tested experimental setups are suitable for generating standardized olecranon fractures and distal humerus fractures with intact soft tissue mantle for surgical training and biomechanical testing.