Artikel
3D time-resolved MR velocity mapping of CSF flow dynamics in patients with obstructive hydrocephalus before and after ventriculostomy
Suche in Medline nach
Autoren
Veröffentlicht: | 21. Mai 2013 |
---|
Gliederung
Text
Objective: The purpose of this study was to evaluate timed-resolved 3D MR velocity mapping as a method for investigation of cerebrospinal fluid (CSF) flow changes in patients with obstructive hydrocephalus treated by endoscopic third ventriculostomy (ETV). The objective of the study was to precisely detect obstructive pathologies within the ventricular system and to evaluate the efficacy of the ETV.
Method: MR velocity mapping was performed in 5 patients (4 female, 1 male, age range 0–51 years). All patients suffered either from idiopathic aqueductal stenosis (AS) or compression of the aqueduct by a tumor and were treated with ETV. MRI examinations were performed on a 3 Tesla MR-system (Magnetom TIM Trio, SiemensHealthcare Sector, Erlangen, Germany) equipped with a 32-channel head coil. Time-resolved 3D MR velocity mapping data were acquired using a standard 3D TFE-PC-sequence in combination with cardiac triggering using a peripheral pulse unit (PPU). Magnetic resonance velocity mapping data were loaded into the commercially available GTFlow software tool (GyroTools, Zurich, Switzerland) for calculation of time-resolved 3D CSF flow patterns in the ventricular system. Values of mean (vmean) and maximum velocity (vpeak) were measured at several ventricular structures.
Results: All patients showed attenuated (hypomotile) CSF flow dynamics before surgery. CSF flow velocity was lower both within the foramina of Monro (vmean 0.46 ± 0.10 cm/s; vpeak 0.76 ± 1.6 cm/s) and the 3rd ventricle (vmean 0.50 ± 0.13 cm/s; vpeak 1.30 ± 0.67 cm/s) when compared to healthy subjects (vmean 0.52 ± 0.11 cm/s; vpeak 1.66 ± 0.65 cm/s within the foramina of Monro and vmean 0.44 ± 0.21 cm/s; vpeak 1.72 ± 0.72 cm/s within the 3rd ventricle). After ETV all patients showed a normalization of CSF flow dynamics. Mean CSF flow velocity through the ventriculostomy was 2.17 ± 1.12 cm/s. Interestingly, we also found CSF flow through the aqueduct after ETV in 3 AS patients.
Conclusions: This study demonstrates that timed-resolved 3D MR velocity mapping is a useful imaging investigation for diagnosis and follow-up of obstructive hydrocephalus, i. e. aqueductal stenosis. This new technique provides an insight in the physiological CSF flow changes related with aqueductal stenosis and its treatment.