gms | German Medical Science

24. Jahrestagung der Deutschen Gesellschaft für Audiologie

Deutsche Gesellschaft für Audiologie e. V.

14.09. - 17.09.2022, Erfurt

Ultra-high resolution models of neural activity in the human inner ear

Meeting Abstract

  • presenting/speaker Werner Hemmert - Technische Universität München, Bioanaloge Informationsverarbeitung, Fakultät für Elektrotechnik und Informationstechnik, Garching, DE
  • Siwei Bai - Technische Universität München, Garching, DE
  • Albert Croner - Technische Universität München, Garching, DE
  • Lukas Driendl - Technische Universität München, Garching, DE
  • Amirreza Heshmat - Universität Innsbruck, Innsbruck, AT
  • Sogand Sajed - Technische Universität Wien, Wien, AT
  • Rudolf Glückert - Universität Innsbruck, Innsbruck, AT
  • Jan Kruse - Universität für Mediendesign, München, DE
  • Thomas Gronert - Universität für Mediendesign, München, DE
  • Anneliese Schrott-Fischer - Universität Innsbruck, Innsbruck, AT
  • Frank Rattay - Technische Universität Wien, Wien, AT

Deutsche Gesellschaft für Audiologie e.V.. 24. Jahrestagung der Deutschen Gesellschaft für Audiologie. Erfurt, 14.-17.09.2022. Düsseldorf: German Medical Science GMS Publishing House; 2022. Doc142

doi: 10.3205/22dga142, urn:nbn:de:0183-22dga1423

Veröffentlicht: 12. September 2022

© 2022 Hemmert et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Cochlear implants (CIs) are the most successful neuroprostheses: they restore hearing in deaf people to a surprisingly high degree. As direct recordings in humans are not possible, computational models that predict neuronal excitation patterns are fundamental to advance this technology. We have developed models of the inner ear from high resolution µCT scans (down to 6 µm voxel size) from fresh cadaveric human temporal bones which cover the anatomical structures of the inner ear with such high details that we could also reconstruct the path of up to 400 individual fibers of the auditory nerve. We have then derived a finite element model (22 Mio. elements), which allowed us to calculate the current flow in the inner ear, when an electrical current was delivered by a virtually inserted electrode array. With a biophysically motivated multi-compartment model, which included the most important voltage-activated ion channels, we were able to derive excitation patterns of the auditory nerve fibers along the cochlea. Based on our detailed anatomical scans, we finally were able to visualize the generation and propagation of action potentials in the nerve with unpreceded detail.