gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

Spherical cortex morphing for visualisation of functional MRI

Oberflächenmanipulation zur Darstellung funktioneller Datensätze

Meeting Abstract

  • corresponding author R. Krishnan - Klinik und Poliklinik für Neurochirurgie, Johann-Wolfgang-Goethe-Universität, Frankfurt/Main
  • E. Hattingen - Institut für Neuroradiologie, Johann-Wolfgang-Goethe-Universität, Frankfurt/Main
  • A. Raabe - Klinik und Poliklinik für Neurochirurgie, Johann-Wolfgang-Goethe-Universität, Frankfurt/Main
  • V. Seifert - Klinik und Poliklinik für Neurochirurgie, Johann-Wolfgang-Goethe-Universität, Frankfurt/Main

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. DocP002

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dgnc2005/05dgnc0270.shtml

Published: May 4, 2005

© 2005 Krishnan et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective

The inter-individual complexity of cortical geometry often impedes studies that involve comparison of functional loci in different individuals. The presentation of functional data in 2D slices or even rendered three-dimensionally is not possible for this task. Compensation strategies involve explicit surface reconstructions (e.g. extensively smoothed surfaces, spherical representations and cortical flat maps). Mapping the cortical surface onto a well-defined geometrical body permits a comparison of different brain surfaces by establishing a 2D coordinate system. In this study we used this technique to align different brain surfaces in order to establish a quality control system for motor functional MRI.

Methods

Functional MRI studies of 5 patients during standardised paradigms for hand-, foot-, and tongue movements were analysed with the Brain Voyager software tool (Brain Innovation, Maastricht, NL) on a standard PC. Statistical maps for the time course of activated voxels and corresponding 3D surfaces were made. Surfaces were reconstructed as native 3D surfaces, extremly smoothed surfaces, spheres and flat maps. After distortion correction, the spherical visualizations were standardized and matched.

Results

The functional motor areas were clearly visible in each of the reconstructed surfaces. After alignment of the normalized spheres, an inter-individual comparison of the functional data sets was possible. By overlaying all data reconstructions, a group analysis of the functional loci reveals all the areas activated by the motor paradigm in each individual.

Conclusions

Morphing cortical surfaces to well-defined geometrical structures makes is possible for functional data sets to be displayed while surface topology is respected (in contrast to slice representations or flat maps). Orientation on the spherical reconstructions may be slightly cumbersome. The proposed approach allows for the creation of cortical surface mapping coordinates (“latitude and longitude” of spherical coordinates), the display of data of group analyses and permits “quality control” for the activation potential of different paradigms. Although distortions are unavoidable, they are not a major methodological drawback of the method.