gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

Spectral domain optical coherence tomography: a pilot study for a novel guidance technique for neurosurgical resection of brain tumours

Spektralradar basierte optische Kohärenz-Tomographie: eine Pilotstudie für eine neuartige, assistierende Technik zur neurochirurgischen Resektion von Hirntumoren

Meeting Abstract

  • H. J. Böhringer - Department of Neurosurgery, University of Schleswig-Holstein, Campus Lübeck
  • U. Knopp - Department of Neurosurgery, University of Schleswig-Holstein, Campus Lübeck
  • D. Boller - Medical Laser Center, Lübeck
  • E. Lankenau - Medical Laser Center, Lübeck
  • G. Hüttmann - Medical Laser Center, Lübeck
  • H. Arnold - Department of Neurosurgery, University of Schleswig-Holstein, Campus Lübeck
  • corresponding author A. Giese - Department of Neurosurgery, University of Schleswig-Holstein, Campus Lübeck

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. Doc11.05.-05.02

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dgnc2005/05dgnc0187.shtml

Published: May 4, 2005

© 2005 Böhringer et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective

Spectral domain optical coherence tomography (SOCT) is a non-invasive imaging technique for tissue structures with a resolution accurate to micrometers. Optical coherence tomography can operate with no tissue contact, and similar to ultrasound B-mode imaging, can generate images based on the reflection of infrared laser light using the inherent optical tissue contrast. We have evaluated this technology for analysis of central nervous system tissues as a potential adjunct to the detection of residual tumour during resection of brain tumours.

Methods

We have used a near infrared 830nm laser to analyse an orthotopic mouse glioma model of invasive and non-invasive human glioma cell lines and native or formalin fixed biopsy specimens of normal brain and glioma tissue of different malignancy grades to correlate the optical tissue analysis with histological parameters. The SOCT laser unit was coupled to a neuronavigation system and was used in a non-contact technique to image central nervous system tissue guided by the signal intensity of tissue structures on magnetic resonance imaging in vivo.

Results

OCT imaging of normal cortical tissues allowed visualisation of arachnoid and pial layers and cortical microvessels at a resolution of <10 μm. Cortex or white matter could be delineated from solid tumour tissue and invaded adjacent brain both by appearance on SOCT and by an automated analysis of the inherent optical tissue contrast. Integration of SOCT into the neuronavigation allowed a directed analysis of tissue structures and a correlation with signal abnormalities on MRI.

Conclusions

Spectral domain optical coherence tomography allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 2-3 mm reaching a spatial resolution of approximately 4-15 μm. This technique allows detection of the distortion of the normal tissue architecture by tumour. The analysis of the optical tissue characteristics enables a quantitative analysis of a backscatter coefficient differentiating normal tissue, invading tumour cells, or solid tumour.