gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Serum metabolites characterize hepatic phenotypes derived by magnetic resonance imaging

Meeting Abstract

  • Juliane Maushagen - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany; Helmholtz Munich, Institut für Epidemiologie, Neuherberg, Germany
  • Johanna Nattenmüller - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany
  • Ricarda von Krüchten - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany
  • Barbara Thorand - Helmholtz Munich, Institut für Epidemiologie, Neuherberg, Germany; Deutsches Zentrum für Diabetesforschung, München-Neuherberg, Neuherberg, Germany
  • Annette Peters - Helmholtz Munich, Institut für Epidemiologie, Neuherberg, Germany; Ludwig-Maximilians-Universität München, Lehrstuhl für Epidemiologie, München, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), München, Germany
  • Wolfgang Rathmann - Deutsches Diabetes-Zentrum (DDZ), Leibniz-Zentrum für Diabetes-Forschung an der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
  • Jerzy Adamski - Helmholtz Munich, Institut für Experimentelle Genetik, Neuherberg, Germany; Yong Loo Lin School of Medicine, Singapur, Singapore; Universität Ljubljana, Ljubljana, Slovenia
  • Christopher Schlett - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany
  • Fabian Bamberg - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany
  • Rui Wang-Sattler - Helmholtz Munich, Institut of Translational Genomics, Neuherberg, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
  • Susanne Rospleszcz - Universitätsklinikum Freiburg, Klinik für Diagnostische und Interventionelle Radiologie, Freiburg, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 311

doi: 10.3205/24gmds537, urn:nbn:de:0183-24gmds5375

Published: September 6, 2024

© 2024 Maushagen et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Introduction: Hepatic steatosis is one of the most common chronic liver diseases and a major public health concern. The prevalence of steatotic liver disease has been estimated to be 23.4% worldwide, with a sharply increasing prevalence in the past years [1]. In recent animal experiments, hepatic iron has been implicated to promote steatosis and exacerbate fibrotic conditions [2]. Thus, pathways implied in iron metabolism could be relevant targets for therapeutic interventions in steatotic liver disease. Metabolomics have emerged as a powerful tool to characterize pathophysiological pathways in metabolic disease, including liver disease [3]. In the current study, we aimed to use population-based data to identify serum metabolites that are associated with hepatic phenotypes, including hepatic fat and iron content derived by magnetic resonance imaging (MRI).

Methods: The analysis is based on the KORA-MRI study, a sample from a population-based cohort including N=400 individuals without history of cardiovascular disease who underwent whole-body MRI [4]. Hepatic fat content was assessed as proton density fat fraction in % and iron content as relaxation rate in s-1. Hepatic steatosis was defined as liver fat content ≥ 5.56% and iron overload as values ≥ 41.0 s-1. The fatty liver index (FLI) was calculated from BMI, waist circumference, triglycerides and GGT [5]. Targeted serum metabolites were quantified from fasted samples by the Biocrates AbsoluteIDQTM p180 kit. Associations between metabolites as exposure variables and hepatic phenotypes as outcomes were evaluated by linear or logistic regression models, adjusted for potential confounders and corrected for multiple testing. Pathway analyses were conducted to reveal different pathways between individuals with and without steatosis, and individuals with and without iron overload, respectively.

Results: The final sample comprised 217 men and 159 women (mean age 56 years). Overall, 50.8% of participants had hepatic steatosis and 43.6% had iron overload. After adjustment for confounders, 6 metabolites (three amino acids, alpha-aminoadipic acid, one lysophosphatidylcholine and one acylalkylphosphatidylcholines) were significantly associated with hepatic fat content, and 12 metabolites (two carnitines, alpha-aminoadipic acid, one lysophosphatidylcholine, four diacylphosphatidylcholines, two acylalkylphosphatidylcholines, two sphingomyelins) were associated with hepatic iron content. Performance of metabolites to predict hepatic steatosis and iron overload was superior to that of the FLI in men (AUC of 0.917 vs 0.826, and 0.798 vs 0.607 for steatosis and iron overload, respectively, p<0.01), and non-inferior to that of the FLI in women (AUC of 0.879 vs 0.881, and 0.664 vs 0.593 for steatosis and iron overload, respectively, p>0.3). Pathway analysis showed overlapping pathways in hepatic steatosis and iron overload such as phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and alanine, aspartate and glutamate metabolism.

Conclusion: In a sample from a population-based cohort, circulating metabolites that were associated with hepatic fat and iron content predicted steatosis and iron overload. Moreover, these metabolites shared common pathways, underlining the potential role of iron in the progression of hepatic disorders, and the potential role of iron-related treatment targets.

The authors declare that they have no competing interests.

The authors declare that a positive ethics committee vote has been obtained.


References

1.
Paik JM, Henry L, Younossi Y, Ong J, Alqahtani S, Younossi ZM. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatol Commun. 2023 Oct 2;7(10):e0251.
2.
Shen Y, Li X, Xiong S, Hou S, Zhang L, Wang L, et al. Untargeted metabonomic analysis of non-alcoholic fatty liver disease with iron overload in rats via UPLC/MS. Free Radic Res. 2023 Dec;57(3):195-207.
3.
McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022 Mar 26;4(5):100477.
4.
Bamberg F, Hetterich H, Rospleszcz S, Lorbeer R, Auweter SD, Schlett CL, et al. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study. Diabetes. 2017 Jan;66(1):158-169.
5.
Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006 Nov 2;6:33.