gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Impact of exposure frequency on disease burden of the common cold – a mathematical modeling perspective

Meeting Abstract

Search Medline for

  • Sebastian Gerdes - Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
  • Michael Rank - Institut für Medizinische Informatik und Biometrie (IMB), TU Dresden, Dresden, Germany
  • Ingmar Glauche - Institut für Medizinische Informatik und Biometrie (IMB), TU Dresden, Dresden, Germany
  • Ingo Röder - Medizinische Fakultät der TU Dresden, Dresden, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 875

doi: 10.3205/24gmds119, urn:nbn:de:0183-24gmds1197

Published: September 6, 2024

© 2024 Gerdes et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

The common cold is a frequent disease in humans and can be caused by a multitude of different viruses. Despite its typically mild nature, the high prevalence of the common cold causes significant human suffering and economic costs. Oftentimes, strategies to reduce contacts are used in order to prevent infection. To better understand the dynamics of this ubiquitous ailment, we develop two novel mathematical models: the common cold ordinary differential equation (CC-ODE) model at the population level, and the common cold individual-based (CC-IB) model at the individual level. Our study aims to investigate whether the frequency of population / individual exposure to an exemplary common cold pathogen influences the average disease burden associated with this virus.

On the one hand, the CC-ODE model captures the dynamics of the common cold within a population, considering factors such as infectivity and contact rates, as well as development of specific immunity in the population. On the other hand, the CC-IB model provides a granular perspective by simulating individual-level interactions and infection dynamics, incorporating heterogeneity in contact rates.

By employing these models, we explore the impact of exposure frequencies upon the net disease burden of common cold infections in theoretical settings. In both modeling approaches, we show that under specific parameter configurations (i.e., characteristics of the virus and the population), increased exposure can result in a lower average disease burden. While increasing contact rates may be ethically justifiable for low-mortality common cold pathogens, we explicitly do not advocate for such measures in severe illnesses. The mathematical approaches we introduce are simple yet powerful and can be taken as a starting point for the investigation of specific common cold pathogens and scenarios.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.

The contribution has already been published: Article with identical abstract submitted to Frontiers in Public Health in 03/2024 and posted on medRxiv in 04/2024 [1].


References

1.
Gerdes S, Rank M, Glauche I, Roeder I. Impact of exposure frequency on disease burden of the common cold - a mathematical modeling perspective [Preprint]. medRxiv. 2024 Apr 27. DOI: 10.1101/2024.04.26.24306416 External link