gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Tracking Changes for Inter-Version Interoperability in Heterogeneous Evolving Medical Terminologies

Meeting Abstract

  • Ralph Schäfermeier - Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
  • Christoph Beger - Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
  • Franz Matthies - Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
  • Konrad Hoeffner - Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany
  • Alexandr Uciteli - Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig University, Leipzig, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 1114

doi: 10.3205/24gmds059, urn:nbn:de:0183-24gmds0598

Published: September 6, 2024

© 2024 Schäfermeier et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Introduction: Medical terminologies and code systems, which play a vital role in the health domain, are rarely static but undergo changes as knowledge and terminology evolves. This includes addition, deletion and relabeling of terms, and, if terms are organized hierarchically, changing their position. Tracking theses changes may become important if one uses multiple versions of the same terminology and interoperability is desired.

Method: We propose a new method for automatic change tracking between terminology versions. It consists of a declarative import pipeline, which translates source terminologies into a common data model. We then use semantic and lexical change detection algorithms. They produce an ontology-based representation of terminology changes, which can be queried using semantic query languages.

Results: The method proves accurate in detecting additions, deletions, relocations and renaming of terms. In cases where inter-version term mapping information is provided by the publisher, we were able to highly enhance the ability to differentiate between simple additions/deletions and refinements/consolidation of terms.

Conclusion: The method proves effective for semi-automatic change handling if term refinements and consolidation are relevant and for automatic change detection if additional mapping information is available.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


References

1.
Hirsch JA, Nicola G, McGinty G, Liu RW, Barr RM, Chittle MD, et al. ICD-10: History and Context. AJNR: American Journal of Neuroradiology. 2016 Apr;37(4):596-9. DOI: 10.3174/ajnr.A4696 External link
2.
Gaudet-Blavignac C, Foufi V, Bjelogrlic M, Lovis C. Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review. Journal of Medical Internet Research. 2021 Jan;23(1):e24594. DOI: 10.2196/24594 External link
3.
Beger C, Matthies F, Sch¨afermeier R, Kirsten T, Herre H, Uciteli A. Towards an Ontology-Based Phenotypic Query Model. Applied Sciences. 2022 Jan;12(10):5214. DOI: 10.3390/app12105214 External link
4.
Oliver DE, Shahar Y, Shortliffe EH, Musen MA. Representation of Change in Controlled Medical Terminologies. Artificial Intelligence in Medicine. 1999 Jan;15(1):53-76. DOI: 10.1016/S0933-3657(98)00045-1 External link
5.
Klein M, Fensel D, Kiryakov A, Ognyanov D. Ontology Versioning and Change Detection on the Web. In: Gòmez-Pèrez A, Benjamins VR, editors. Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web. Berlin, Heidelberg: Springer; 2002. p. 197-212. DOI: 10.1007/3-540-45810-7 20 External link