gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Semi-automatic export of electrophysiological meta-data to NFDI4Health local data hubs: use case of microneurography odML tables – a technical case report

Meeting Abstract

  • Mayra Roxana Elwes - Universität zu Köln, Köln, Germany
  • Alina Troglio - RWTH Aachen, Aachen, Germany
  • Masoud Abedi - IMISE, Universität Leipzig, Leipzig, Germany
  • Martin Golebiewski - HITS gGmbH, Heidelberg, Germany
  • Frank A. Meineke - Universität Leipzig, Leipzig, Germany
  • Barbara Namer - Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
  • Oya Beyan - Universität zu Köln, Köln, Germany
  • Ekaterina Kutafina - Universität zu Köln, Köln, Germany
  • Toralf Kirsten - Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig, Leipzig, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 561

doi: 10.3205/24gmds051, urn:nbn:de:0183-24gmds0512

Published: September 6, 2024

© 2024 Elwes et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

The Local Data Hubs (LDH) are a platform for FAIR sharing of medical research (meta-)data. In order to promote the usage of LDH in different research communities, it is important to understand the domain-specific needs, solutions currently used for data organization and provide support for seamless uploads to LDHs. In this work, we analyze the use case of microneurography, which is an electrophysiological technique for analyzing neural activity. In this work we propose an extension to odMLtables, a tool for handling metadata in the electrophysiological community, that allows for semi-automatic upload of metadata conforming to previously developed microneurography odML tables templates. Apart from mapping the odML concepts to the LDH concepts, we enable anonymization from within the tool and the creation of custom-made summaries on the underlying data sets. In future work, we will extend this approach to other use cases to disseminate the usage of LDHs in a large research community.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


References

1.
Meineke F, Golebiewski M, Hu X, Kirsten T, Löbe M, Klammt S, et al. NFDI4Health Local Data Hubs for Finding and Accessing Health Data: Making Distributed Data Accessible Through a SEEK-Based Platform. In: 1st Conference on Research Data Infrastructure (CoRDI) - Connecting Communities; 2023 Sep 12-14; Karlsruhe, Germany. DOI: 10.52825/cordi.v1i.375 External link
2.
Grewe J, Wachtler T, Benda J. A Bottom-up Approach to Data Annotation in Neurophysiology. Front Neuroinform. 2011 Aug 30;5:16. DOI: 10.3389/fninf.2011.00016 External link
3.
Sprenger J, Zehl L, Pick J, Sonntag M, Grewe J, Wachtler T, et al. odMLtables: A User-Friendly Approach for Managing Metadata of Neurophysiological Experiments. Front Neuroinform. 2019;13:62. DOI: 10.3389/fninf.2019.00062 External link
4.
Troglio A, Nickerson A, Schlebusch F, Röhrig R, Dunham J, et al. odML-Tables as a Metadata Standard in Microneurography. In: German Medical Data Sciences 2023 – Science Close to People. IOS Press; 2023. p. 3–11. DOI: 10.3233/SHTI230687 External link
5.
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. Front Netw Physiol. 2023;3:1099282. DOI: 10.3389/fnetp.2023.1099282 External link
6.
Badawy R, Hameed F, Bataille L, Little MA, Claes K, Saria S, et al. Metadata Concepts for Advancing the Use of Digital Health Technologies in Clinical Research. Digit Biomark. 2019 Oct 7;3(3):116–32. DOI: 10.1159/000502951 External link