gms | German Medical Science

64. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS)

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie

08. - 11.09.2019, Dortmund

AutoLane: An Open-source Tool for Semi-automatic Analysis of Gel Electrophoresis Images

Meeting Abstract

  • Mark Weber - Uniklinik RWTH Aachen, Aachen, Germany
  • Viorel-Marin Rusu - R&D Department, Magtovio b.v, Aachen, Germany
  • Elisa A. Liehn - Uniklinik RWTH Aachen, Aachen, Germany
  • Roberta Florescu - Uniklinik RWTH Aachen, Aachen, Germany
  • Alexander Schuh - Uniklinik RWTH Aachen, Aachen, Germany
  • Mihaela Rusu - Uniklinik RWTH Aachen, Aachen, Germany
  • Stephan Jonas - Technical University of Munich, München, Germany

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 64. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Dortmund, 08.-11.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocAbstr. 70

doi: 10.3205/19gmds098, urn:nbn:de:0183-19gmds0989

Published: September 6, 2019

© 2019 Weber et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at



Analyzing gel electrophoresis images of protein fractions with low vs. high molecular weight is an important task for the discovery of cardiac biomarkers in the context of myocardial infarction. Manual thresholding in image processing presents a bottleneck for rapid image analysis while leading to reproducibility issues. In the attempt to overcome these issues, we propose a novel semi-automatic analysis system that offers a robust lane detection and information extraction algorithm. The proposed algorithm is based on four main steps: (1) pre-processing, (2) noise-filtering, (3) gradient-based detection and (4) molecular weight extraction. Our detection algorithm uses a custom variant of the Canny edge detector and clustering, while the extraction procedure uses curve fitting to determine molecular weights based on the reference ladders. Our experimental results show that the proposed method eliminates image artefacts while preserving the image characteristics and improves the overall image analysis. Moreover, we open-source our tool to enable researchers to reliably, reproducibly and robustly produce results from gel electrophoresis images.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012 Jan;125(1):e2-20. DOI: 10.1161/CIR.0b013e31823ac046 External link
Merrell K, Southwick K, Graves SW, Esplin MS, Lewis NE, Thulin CD. Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. Journal of biomolecular techniques: JBT. 2004 Dec;15(4):238-248.
Kusim AS, Abdullah NE, Ab Rahim AA. An image processing enhancement approach to extract information in gel electrophoresis image. In: 2013 International Conference on Technology, Informatics, Management, Engineering and Environment; 23-26 June 2013; Bandung, Indonesia. Piscataway, NJ: IEEE; 2013. p. 9-16.
Kaabouch N, Schultz RR, Milavetz B, Balakrishnan L. An analysis system for DNA gel electrophoresis images based on automatic thresholding an enhancement. In: 2007 IEEE International Conference on Electro/Information Technology; 17-20 May 2007; Chicago, USA. Piscataway, NJ: IEEE; 2007. p. 26-31.
Baker M. 1,500 scientists lift the lid on reproducibility. Nature News. 2016 May 26;533(7604):452. DOI: 10.1038/533452a External link
Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, ter Haar Romeny B, Zimmerman JB, Zuiderveld K. Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing. 1987 Sep 1;39(3):355-68. DOI: 10.1016/S0734-189X(87)80186-X External link
Canny J. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1986;PAMI-8(6):679-698. DOI: 10.1109/TPAMI.1986.4767851 External link
Department of Medical Informatics, Divsion mHealth. mHealth Software Page. [Accessed 20 February 2019]. Available from: External link