gms | German Medical Science

46. Kongress der Deutschen Gesellschaft für Rheumatologie (DGRh), 32. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie (DGORh), Wissenschaftliche Herbsttagung der Gesellschaft für Kinder- und Jugendrheumatologie (GKJR)

19.09. - 22.09.2018, Mannheim

Metabolic changes of human ex vivo naïve and memory CD4+ T cells during aging

Meeting Abstract

  • Yuling Chen - Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin
  • Pelle Löwe - Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin
  • Hao Wu - Charité – Universitätsmedizin Berlin, Medizinische Klinik für Gastroenterologie/Infektiologie/Rheumatologie, Berlin
  • Frank Buttgereit - Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin
  • Timo Gaber - Charité – Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin

Deutsche Gesellschaft für Rheumatologie. Deutsche Gesellschaft für Orthopädische Rheumatologie. Gesellschaft für Kinder- und Jugendrheumatologie. 46. Kongress der Deutschen Gesellschaft für Rheumatologie (DGRh), 32. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie (DGORh), Wissenschaftliche Herbsttagung der Gesellschaft für Kinder- und Jugendrheumatologie (GKJR). Mannheim, 19.-22.09.2018. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocER.25

doi: 10.3205/18dgrh104, urn:nbn:de:0183-18dgrh1041

Published: February 5, 2019

© 2019 Chen et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Background: Age-related decline in immune cell functions (immunosenescence), such as a decrease in T-cell function, may contribute to the development of rheumatoid arthritis (RA). In aged people, senescent T cells produce low amounts of pro-inflammatory cytokines and tend to proliferate on low level leading to low-grade inflammation. However, cellular metabolism modulates effector functions such as cytokine production and proliferation in T cells by providing energy and building blocks. Naïve and memory CD4+ T cells are relatively metabolic quiescent immune cells. Currently, metabolic phenotype of naïve and memory CD4+ T cells and how metabolism affects functions of naïve and memory CD4+ T cells in aged people are not well understood. Therefore, we analyzed the differences in metabolic phenotype of peripheral naïve and memory CD4+ T cells of young and aged healthy donors.

Methods: Naïve and memory CD4+ T cells were isolated from PBMCs of 5 ‘young’ donors (23-32 years, 26.6±3.4 years) and 4 ‘aged’ donors (54-67 years, 62.3±5.7 years) using MACSTM technology. Purity and vitality of isolated cell fractions were assessed by flow cytometry. Ex vivo naïve and memory CD4+ T cells were analyzed by SeahorseTM Technology to determine oxygen consumption rate andproton efflux rate (PER) using Mito Stress Test and Glycolytic Rate Assay, respectively.

Results: Memory CD4+ T cells demonstrated a higher (i) maximal respiration rate, (ii) spare respiratoy capacity, (iii) ratio of maximal respiration/basal respiration, (iv) proton leak, (v) basal glycolytic rate, (vi) basal PER and (vii) post 2-DG acidification rate than naïve CD4+ T cells. Moreover, naïve CD4+ T cells from 'aged' donors displayed a higher proton leak than naïve CD4+ T cells from 'young' donors.

Conclusion: Here we demonstrate higher mitochondrial and glycolytic capacity of human ex vivo memory CD4+ T cells as compared to naïve T-helper cells which can be interpreted by mitochondrial biogenesis and higher glycolytic rate supporting the idea of being prepared for rapid recall reaction. Our preliminary data on the impact of aging already demonstrate a higher proton leak in mitochondria of aged donors especially in naïve T cells which can be assumed to result in a lack of energy upon activation which may lead to a decrease in T-cell function. Thus, an increase in proton leakage in T cells may contribute to the development of RA during aging.