gms | German Medical Science

42. Kongress der Deutschen Gesellschaft für Rheumatologie, 28. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie, 24. Wissenschaftliche Jahrestagung der Gesellschaft für Kinder- und Jugendrheumatologie

17.-20. September 2014, Düsseldorf

Synoviocytes. Autonomous drivers of chronicity?

Meeting Abstract

  • Martin Böttcher - Universitätsklinikum Jena, Institut für Immunologie, Jena
  • Georg Schett - Universitätsklinikum Erlangen, Medizinische Klinik 3, Rheumatologie und Immunologie, Erlangen
  • Christine Falk - Medizinische Hochschule Hannover, Transplantationsimmunologie, Hannover
  • Ingo Irmler - Universitätsklinikum Jena, Institut für Immunologie, Jena
  • Christina Wunrau - Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Institut für Experimentelle Muskuloskelettale Medizin, Münster
  • Adelheid Korb-Pap - Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Institut für Experimentelle Muskuloskelettale Medizin, Münster
  • Thomas Pap - Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Institut für Experimentelle Muskuloskelettale Medizin, Münster
  • Thomas Kamradt - Universitätsklinikum Jena, Institut für Immunologie, Jena

Deutsche Gesellschaft für Rheumatologie. Deutsche Gesellschaft für Orthopädische Rheumatologie. Gesellschaft für Kinder- und Jugendrheumatologie. 42. Kongress der Deutschen Gesellschaft für Rheumatologie (DGRh); 28. Jahrestagung der Deutschen Gesellschaft für Orthopädische Rheumatologie (DGORh); 24. wissenschaftliche Jahrestagung der Gesellschaft für Kinder- und Jugendrheumatologie (GKJR). Düsseldorf, 17.-20.09.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. DocER.05

doi: 10.3205/14dgrh072, urn:nbn:de:0183-14dgrh0728

Published: September 12, 2014

© 2014 Böttcher et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Background: Immunization with Glucose-6-phosphate isomerase (G6PI) induces arthritis in susceptible strains of mice. Depletion of regulatory T cells (Tregs) prior to immunization switches the usually acute, self-limiting course to a non-remitting, destructive arthritis. This provides a possibility to study molecular switches for the transition from acute, self-limiting to chronic, destructive arthritis within one mouse model.

To examine the role of fibroblast-like synoviocytes (FLS), which are known to modulate immune responses via the production of pro- and anti-inflammatory mediators, the phenotype and function of FLS from mice with either acute, self-limiting or non-remitting, destructive arthritis was studied.

Methods: FLS from DBA/1 mice that developed either the acute or the chronic form of arthritis were isolated from joints over a time course of 56 days. To investigate the phenotype of FLS ELISA studies as well as zymography have been performed. For the functional examination of these cells the matrix-associated transepithelial resistance invasion (MATRIN) assay and a cartilage attachment assay have been used. Furthermore, FLS have been transferred in vivo into the knee joints of immunodeficient mice and the joints have been scored histologically. Experiments identifying the underlying mechanisms using Western Blot are ongoing and promising.

Results: FLS from Treg-depleted mice produced significantly more cytokines (e.g. Interleukin 6 (IL-6)) and chemokines upon stimulation. This increased susceptibility to cytokine stimulation in chronic animals compared to acute ones is observable throughout the disease course (56 days). Furthermore, the secretion and activity of matrix metalloproteases (MMPs) was enhanced in the FLS from chronic mice compared to samples from acute ones. Additional functional differences include the collagen-destructive potential and the potential to attach and eventually invade wild type cartilage. Here, FLS from Treg-depleted chronic arthritic mice showed a higher invasive and destructive potential. Ultimately, FLS from Treg-depleted mice were able to destroy cartilage in vivo upon transfer into immunodeficient mice.

Conclusion: Our results are compatible with the hypothesis that uninhibited inflammation in the early phase of Treg-depleted mice causes the acquisition of an autonomously aggressive phenotype of synoviocytes which contribute to the switch from acute to chronic arthritis even in the absence of late support from T and B lymphocytes.