gms | German Medical Science

71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

21.06. - 24.06.2020

A rapid one-pot synthesis method for the reproducible generation of well-defined gold nano-carriers to transfect brain tumour 3D cultures

Eine rapide Methode zur reproduzierbaren Herstellung von gut charakterisierten Gold-Nanopartikeln zur Transfektion von 3D Hirntumor-Zellkulturen

Meeting Abstract

  • Beatriz Giessen - Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Düsseldorf, Deutschland
  • Ann-Christin Nickel - Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
  • Alba Garzón Manjónc - Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Deutschland
  • Andres Vargas-Toscano - Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
  • Christina Scheu - Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Deutschland
  • Christoph Janiak - Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Düsseldorf, Deutschland
  • presenting/speaker Ulf Dietrich Kahlert - Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), 9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie. sine loco [digital], 21.-24.06.2020. Düsseldorf: German Medical Science GMS Publishing House; 2020. DocP155

doi: 10.3205/20dgnc445, urn:nbn:de:0183-20dgnc4453

Published: June 26, 2020

© 2020 Giessen et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Objective: Glioblastoma is an aggressive disease with currently limited treatment options available. GBM cells with stem cell (=GSCs) properties are thought to be responsible for the initiation and propagation of the disease. There is a great clinical need for efficient therapy delivery to GSCs. In this work, we developed a novel method to synthesize fluorescent gold nanoparticles as potential drug and gene delivery systems able to penetrate three-dimensional in vitro systems.

Methods: Four different procedures aiming to synthetize gold (Au) nanoparticles (NPs) in polyethylene imine (PEI) solution as stabilizer, as well as fluorescein isothiocyanate (FITC) as a fluorescent marker were applied incorporating a fast microwave-assisted reaction. NP characterization was performed employing transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), fluorescence spectroscopy and thermogravimetric analysis (TGA). NP purification via dialysis was performed. The amount of incorporation into GSC using a panel of GSC cell lines was quantitatively assessed via FACS and cytotoxicity assessed with cell growth assay. "False-positive" cells due to surface-bound NP were distinguished from cell internalization using a dye-quenching step before FACS.

Results: Resulting core sizes of NPs range from 3 to 6 nm. Our repetitive analysis resulted in an average internalization efficacy of up to 53% of all the exposed GSCs (500.000 cells, 1 mg/L NPs) with minimal cytotoxic effects (>75% cell growth as compared to control treatment).

Conclusion: We developed a straight-forward, reproducible one-pot synthesis method for Au-NPs as nanocarriers. Those NPs are able to efficiently transfect GSCs. The limited per se cytotoxicity of the particles may be beneficialin order to reduce off-target effects to no cancer cells upon functionalization of Au-NPs with anti-GSC specific targeting moieties. Given the particularly high therapy resistance of GSCs, this technology may be useful for developing novel treatment strategies to manage this disease.