gms | German Medical Science

71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

21.06. - 24.06.2020

Intraoperative mechanical measurement of tissue biomechanics in brain tumours

Intraoperative mechanische Vermessung der Gewebemechanik von Gehirntumoren

Meeting Abstract

  • presenting/speaker Moritz Matthiae - Universitätsklinikum Schleswig-Holstein, Abteilung für Neurochirurgie, Lübeck, Deutschland
  • Jessica Kren - Universitätsklinikum Schleswig-Holstein, Abteilung für Neurochirurgie, Lübeck, Deutschland
  • Dirk Theisen-Kunde - Medizinisches Laserzentrum Lübeck GmbH, Lübeck, Deutschland
  • Ralf Brinkmann - Medizinisches Laserzentrum Lübeck GmbH, Lübeck, Deutschland; Universität zu Lübeck, Institut für Biomedizinische Optik, Lübeck, Deutschland
  • Steffen Buschschlüter - Söring GmbH, Quickborn, Deutschland
  • Matteo Mario Bonsanto - Universitätsklinikum Schleswig-Holstein, Abteilung für Neurochirurgie, Lübeck, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), 9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie. sine loco [digital], 21.-24.06.2020. Düsseldorf: German Medical Science GMS Publishing House; 2020. DocP140

doi: 10.3205/20dgnc424, urn:nbn:de:0183-20dgnc4243

Published: June 26, 2020

© 2020 Matthiae et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Objective: Tactile intraoperative information is important for the neurosurgeon’s decision in tumor surgery. The haptic experience together with visual inspection through the microscope enables the surgeonto distinguish tumor tissue from healthy brain tissue.In this study, a standardized intraoperative indentation measurement is carried out to detect elasticities of tumor tissue quantitatively. This study is part of a comprehensive BMBF project (FKN: 13N14664) aimed at optimizing the resection of brain tumors through novel solutions, while minimizing surgical risks of functional damage.

Methods: In vivo-detected tumor elasticities of fresh tissue samples are measured within 5 minutes directly in the operating room. For this purpose, a metallic test specimen with cylindrical dimensions is pressed into the soft tissue and the counterforce is determined with respect to indentation depth. An objective measure of tumor elasticity is Young's modulus whichis determined by indentation for different specimens of each tumor. The resulting elasticities are correlated with neuropathological tissue properties, preoperative MRI imaging and the tactile impressions of the surgeon.

Results: The indentation measurementsare carried out on gliomas, metastases and meningeomes. There is a strong heterogeneity of local elasticity within each tumor. Generally, however, there is a systematic link between measured tumor elasticities and tactile findings. The intraoperative mechanical elasticity measurements of this study open up possibilities for distinguishing between healthy and tumor tissue. It is thus an alternative method to established intraoperative onlineelastographic ultrasound and MR elastography.

Conclusion: As far as the current scientific state of the art is concerned, there is no elastic data from indentation measurements of brain tumors measured in vivo. Thus, for the first time, such a reference system for tumor elasticity in brain tumors is to be established, which is the basis for an automated intelligent intraoperative detection of tumor tissue. For example, the automated adaptation of the supplied ultrasound energyduring the resection of brain tumors is a possible application.