gms | German Medical Science

55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

25. bis 28.04.2004, Köln

Are two reference points sufficient for stereotactic coordinate transformation in deep brain stimulation?

Sind 2 Referenzpunkte für die Transformation von Atlaskoordinaten in stereotaktische Koordinaten auf dem Gebiet der tiefen Hirnstimulation ausreichend?

Meeting Abstract

  • corresponding author Jürgen Schlaier - Neurochirurgische Klinik, Universitätsklinikum Regensburg, Regensburg
  • P. Herzog - Neurochirurgische Klinik, Zentralklinikum Augsburg, Augsburg
  • P. Schödel - Neurochirurgische Klinik, Universitätsklinikum Regensburg, Regensburg
  • J. Warnat - Neurochirurgische Klinik, Universitätsklinikum Regensburg, Regensburg
  • M. Lange - Neurologische Klinik, Universitätsklinikum Regensburg, Regensburg
  • J. Winkler - Neurologische Klinik, Universitätsklinikum Regensburg, Regensburg
  • A. Brawanski - Neurochirurgische Klinik, Universitätsklinikum Regensburg, Regensburg

Deutsche Gesellschaft für Neurochirurgie. Ungarische Gesellschaft für Neurochirurgie. 55. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 1. Joint Meeting mit der Ungarischen Gesellschaft für Neurochirurgie. Köln, 25.-28.04.2004. Düsseldorf, Köln: German Medical Science; 2004. DocP 11.113

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dgnc2004/04dgnc0396.shtml

Published: April 23, 2004

© 2004 Schlaier et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Objective

By transforming atlas coordinates into stereotactic frame coordinates, correction for rotational targeting error is required. We compared commercially available software based on 2 reference points (anterior and posterior commisure) with a correction algorhythm, developed by one of the authors (HP), which is based on an additional reference point in the midline of the brain. Our hypothesis was that there is a statistically significant and clinically relevant difference between the resulting coordinates, given that the 3-point-based algorhythm represents the mathematically most precise transformation.

Methods

We investigated 14 volunteers, who were fixed to the stereotactic frame by tight adhesive bands. Sagittal, coronal and axial T2 weighted MRI scans as well as MPRage sequences were performed. All MRI measurements were fused to the MPRage data set. The anterior and posterior comissure and one additional point (septum pellucidum) were determined on the axial T2 weighted images. Bilateral atlas coordinates for subthalamic nucleus (STN), globus pallidus pars interna (GPi) and nucleus ventralis intermedius (Vim) were transformed to stereotactic frame coordinates either without correction or by 2-point or 3-point correction. A total of 896 coordinates (x,y,z for STN, GPi and Vim in both hemispheres) were calculated.

Results

The difference between coordinates obtained from 3-point correction and 2-point correction ranged from 0-2,8mm (mean 0,24mm, standard deviation SD 0,33mm). Comparing the 3-point based transformation with the coordinates without any correction mean difference was 0,53mm (SD 0,48mm). The deviation of the 2-point coordinates from the 3-point transformation obtained coordinates was significantly less pronounced than the difference between the 3-point transformation and the coordinates without any correction of the rotational error (p<0,001)

Conclusions

In deep brain stimulation based on atlas-derived coordinates (Vim) rather than direct targeting on visible structures (STN,GPi) stereotactic planning should be performed with 3-point based transformation for correction of rotational errors.