Article
Non-viral gene therapy for regeneration in an ischemic flap model
Search Medline for
Authors
Published: | May 17, 2010 |
---|
Outline
Text
Introduction: We established a cell-based, non viral gene-transfer method using fibroblasts to temporarily produce bFGF and VEGF165 in ischemic tissue. Protein delivery from transfected cells can induce expression of tissue inductive factors to stimulate the cellular processes required for regeneration. In the present work, we investigated effects of temporary expression of the angiogenic proteins basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF165) on ischemic tissue for therapeutic purposes.
Materials and methods: The eukaryotic expression vectors harboring VEGF and bFGF cDNAs were transfected into rat primary skin fibroblasts mediated by Amaxa Nucleofector. To determine an improvement in ischemically challenged tissue, a genetically modified cellspool was injected in an ischemic flap model. Gene expression and protein production in vivo and in vitro were measured by real time PCR and immunoassay (BioPlex) respectively. Clinical outcome was demonstrated by planimetric measurements.
Results: Temporary protein expression of bFGF and VEGF165 in the target tissue of the ischemic flap model increased compared to controls after injection of genetically modified cells. A significant improvement of tissue survival was observed after the transfected cell administration. A reduction in flap necrosis by one-third or more was detected after two weeks if transfected cells were applied 1 week before ischemia.
Conclusion: In our work we showed that temporary expression of bFGF and VEGF165 induces therapeutically relevant effects in the rat flap model of ischemia. Standardized high efficiency non viral bFGF and VEGF165 transfection technology can be used in preclinical research.