gms | German Medical Science

26. Jahrestagung der Deutschen Gesellschaft für Audiologie

Deutsche Gesellschaft für Audiologie e. V.

06.03. - 08.03.2024, Aalen

A fused deep denoising sound coding strategy for bilateral cochlear implants

Meeting Abstract

Search Medline for

  • presenting/speaker Waldo Nogueira - Medizinische Hochschule Hannover, HNO, Hannover, Germany
  • Tom Gajecki - Medizinische Hochschule Hannover, HNO, Hannover, Germany

Deutsche Gesellschaft für Audiologie e.V.. 26. Jahrestagung der Deutschen Gesellschaft für Audiologie. Aalen, 06.-08.03.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. Doc120

doi: 10.3205/24dga120, urn:nbn:de:0183-24dga1206

Published: March 5, 2024

© 2024 Nogueira et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Cochlear implants (CIs) provide a solution for individuals with severe sensorineural hearing loss to regain their hearing abilities. When someone experiences this form of hearing impairment in both ears, they may be equipped with two separate CI devices, which will typically further improve their spatial hearing. This spatial hearing is particularly crucial when tackling the challenge of understanding speech in noisy environments, a common issue CI users face. Currently, extensive research is dedicated to developing algorithms that can autonomously filter out undesired background noises from desired speech signals. At present, some research focuses on achieving end-to-end denoising, either as an integral component of the initial CI signal processing or by fully integrating the denoising process into the CI sound coding strategy. This work is presented in the context of bilateral CI (BiCI) systems, where we propose a deep-learning-based bilateral speech enhancement model that shares information between both hearing sides. Specifically, we connect two monaural end-to-end deep denoising sound coding techniques through intermediary latent fusion layers. These layers amalgamate the latent representations generated by these techniques by multiplying them together, resulting in an enhanced ability to reduce noise and improve learning generalization. The objective instrumental results demonstrate that the proposed fused BiCI sound coding strategy achieves higher interaural coherence, superior noise reduction, and enhanced predicted speech intelligibility scores compared to the baseline methods. Furthermore, our speech-in-noise intelligibility results reveal that the deep denoising sound coding strategy can attain scores similar to those achieved in quiet conditions.