Article
ML-Ansätze zur Klassifizierung von CI-Patienten
Search Medline for
Authors
Published: | March 5, 2024 |
---|
Outline
Text
In den letzten Jahren haben sich die Indikationskriterien für Cochlea-Implantate (CI) deutlich erweitert. Gemäß dem Weißbuch zur Cochlea-Implantat-Versorgung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde liegt die Schwelle für eine Implantation bei einem Einsilberverstehen von 50% (65 dB mit Hörgerät) und für eine geplante EAS-Versorgung (elektrisch-akustische Stimulation) sogar bei 60%. Kandidaten in diesem Grenzbereich zögern oft mit der Entscheidung zur Implantation, da unklar ist, ob die Operation eine merkliche Verbesserung der Hörleistung bewirkt. Daher ist die Entwicklung präziser Vorhersagetools für die postoperative Leistung von CI von großer Bedeutung.
Die CI-Datenbank der Medizinischen Hochschule Hannover umfasst retrospektive Daten von 7.300 Patienten mit 10.500 Cochlea-Implantationen. Die Datensätze enthalten epidemiologische Faktoren, gerätespezifische Informationen, operationsbezogene Daten (z.B. Insertionstiefe), Einstellparameter sowie umfassende präoperative Audiometrie- und longitudinale Ergebnisdaten mit Cochlea-Implantat. Aus diesem Bestand wurden 2.200 geeignete Datensätze für ein maschinelles Lernsystem ausgewählt. Wir setzten ein Entscheidungsbaummodell ein – einen strukturierten, baumförmigen Algorithmus, der Daten nach bestimmten Kriterien aufteilt, um Vorhersagen zu treffen. Der Prozess beinhaltete umfassende Datenanalyse und k-fache Kreuzvalidierung, um möglichst präzise und interpretierbare Vorhersagen auf Basis eines umfangreichen Datenpools zu gewährleisten. Die Zielvariable war das postoperative Einsilbertestergebnis ein Jahr nach der Implantation. Die aktuelle Modellinstanz zeigt einen mittleren absoluten Fehler von 18,9% (Standardabweichung=13,8%) bei der Vorhersage der Einsilberergebnisse für das Validierungsset und aktuelle Testdaten. Das System zeigt großes Potenzial, maschinelles Lernen zur Verbesserung der Patientenversorgung einzusetzen. Die neuesten Ergebnisse werden auf der Tagung präsentiert.