gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Modal age at death and modal residual lifetime to model and communicate diabetes mortality

Meeting Abstract

Suche in Medline nach

  • Marina Zamsheva - Martin-Luther University Halle-Wittenberg, Institute of Medical Epidemiology, Biostatistics and Informatics, Halle (Saale), Germany
  • Andreas Wienke - Martin-Luther University Halle-Wittenberg, Institute of Medical Epidemiology, Biostatistics and Informatics, Halle (Saale), Germany
  • Oliver Kuß - Deutsches Diabetes-Zentrum (DDZ), Leibniz-Zentrum für Diabetes-Forschung an der Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 548

doi: 10.3205/24gmds392, urn:nbn:de:0183-24gmds3928

Veröffentlicht: 6. September 2024

© 2024 Zamsheva et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Life expectancy or remaining lifetime is an essential concept in the analysis of mortality in epidemiology or demography. It comes with the advantage of being communicated on the absolute time scale, e.g. age scale. Common summary measures for the remaining lifetime, conditional upon having survived until a certain age, are mean and median residual lifetimes. However, the modal remaining lifetime, that is, the remaining time to the most probable time of death might also be a comprehensive and easy-to-communicate measure [1]. Indeed, the modal age at death has been termed “the most central and natural characteristic of human longevity” as early as 1878 [2].

We introduce the idea of modal residual lifetime and show a surprisingly general linearity property of it: For each and every possible age-at-death distribution with existed modal value, the modal residual lifetime decays linearly with slope -1 for every year survived. Admittedly this comes with the disadvantage that modal residual lifetime is only defined until the mode of the age-at-death distribution is reached.

We illustrate the modal residual lifetime with data from all statutory health-insured persons in Germany in that were aged 30 years or older and were diagnosed or free from type 2 diabetes in 2013. As we observed previously that, the involved age-at-death distributions follow nearly perfectly Gompertz distributions [3] we use the Gompertz distribution to compare the differences in modal age at death for persons without and with diabetes. The modal age at death for women without diabetes is 90.22 [90.11, 90.35] and with diabetes is 86.08 [85.94, 86.22]. Respectively for men without diabetes is 86.32 [86.25, 86.38] and with diabetes is 80.74 [80.64, 80.88].

The modal residual lifetime extends the familiar concept of the mean and median residual lifetime by another measure of central tendency for the distribution of residual lifetime. The modal value is not only easy to interpret, but it also provides important statistical advantages and could be more widely used in describing mortality in epidemiology or clinical research.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


References

1.
Detsky AS, Redelmeier DA. Measuring Health Outcomes — Putting Gains into Perspective. New England Journal of Medicine. 1998 Aug;339(6):402–404.
2.
Lexis W. Sur la duree normale de la vie humaine et sur la theorie de la stabilite des rapports statistiques [On the normal human lifespan and on the theory of the stability of the statistical ratios. Annales de Demographie Internationale.1878;2:447–460.
3.
Kuss O, Baumert J, Schmidt C, Tönnies T. Mortality of type 2 diabetes in Germany: additional insights from Gompertz models. Acta Diabetol. 2024 Mar 11. DOI: 10.1007/s00592-024-02237-w Externer Link