gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Advanced Spike Sorting on Microneurography Data: Proof-of-Concept of VPNet as a Universal Approach

Meeting Abstract

  • Alina Troglio - Research Group Neuroscience, IZKF, Department of Neurophysiology, RWTH Aachen University, Aachen, Germany
  • Andrea Fiebig - Research Group Neuroscience, IZKF, Department of Neurophysiology, RWTH Aachen University, Aachen, Germany
  • Péter Kovács - Department of Numerical Analysis, Eötvös Loránd University, Budapest, Hungary
  • Ekaterina Kutafina - Institute for Biomedical Informatics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Köln, Germany
  • Barbara Namer - Research Group Neuroscience, IZKF, Department of Neurophysiology, RWTH Aachen University, Aachen, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 575

doi: 10.3205/24gmds220, urn:nbn:de:0183-24gmds2201

Veröffentlicht: 6. September 2024

© 2024 Troglio et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Introduction: Microneurography, a unique tool within pain and itch research, is an electrophysiological method to monitor peripheral nerve fiber activity [1]. Given that recordings typically contain multiple active fibers, the analysis of neuronal discharge patterns requires spike sorting. It is a challenging task for microneurography due to low signal-to-noise ratios and the tendency of fibers to exhibit similar spike shapes that may evolve over time. In previous research, we introduced an initial spike sorting methodology for microneurography, utilizing manual feature extraction and support vector machine (SVM) classification [2]. Here, we evaluate the model-based network VPNet [3], which combines advanced computational methods with relatively low demands for training data size.

Methods: We evaluate the spike sorting performance of VPNet using 6 microneurography recordings. Within these recordings, we categorize the spikes into 2, 3, and 6 classes, respectively, depending on the number of fibers. Spike labeling was conducted using the marking method [4], which ensures that action potentials elicited by low-frequency stimulation are on “tracks”, providing ground truth data. For each fiber cluster, we have computed a template by averaging all tracked spikes. The template allows us to visualize inter-fiber differences. VPNet, based on variable projections (VP), presents a novel neural network architecture. We partitioned the data into 80% for training and 20% for testing, implementing 5-fold cross-validation to assess generalizability. The analysis involved averaging accuracies across each fold.

Results: Datasets A1-A3 include two active fibers, representing two distinct classes. The average accuracy of 5-folds for A1 and A2 stands at 0.91, with A3 trailing closely at 0.90. In the case of A4, which involves three classes, we observed an average accuracy of 0.67. Similarly, A5 (two classes) yields a score of 0.68, while A6, with five fibers, exhibits a score of 0.50.

Discussion: The VPN-net model demonstrated outcomes comparable to our optimized per-recording results computed with multiple feature extraction pipelines. The essential advantage of the VPNet approach is that it can be used universally, without the need to choose an optimal feature extraction method for each data set. VPNet offers distinct advantages over alternative neural network architectures due to its reduced variable count, resulting in a more compact structure and parameter interpretability.

Conclusion: In conclusion, we see the potential of the VPNet approach as a universal method for microneurography spike sorting. Since each recording has a relatively low number of spikes, we are further working on solutions that allow integrating multiple datasets via, for example, transfer learning for better performance.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


References

1.
Vallbo ÅB. Microneurography: how it started and how it works. J Neurophysiol. 2018 Sep 1;120(3):1415–27.
2.
Troglio A, Fiebig A, Kutafina E, Namer B. Automated Spike Sorting in Microneurography: A Proof-of-Concept through Classification on Ground Truth Data. 2024. DOI: 10.47952/gro-publ-196 Externer Link
3.
Kovács P, Bognár G, Huber C, Huemer M. VPNet: Variable Projection Networks. Int J Neur Syst. 2022 Jan;32(01):2150054.
4.
Schmelz M, Forster C, Schmidt R, Ringkamp M, Handwerker HO, Torebjörk HE. Delayed responses to electrical stimuli reflect C-fiber responsiveness in human microneurography. Exp Brain Res. 1995;104(2):331–6.