Artikel
Simplifying Multiparty Computation: A Client-Driven Metaprotocol
Suche in Medline nach
Autoren
Veröffentlicht: | 6. September 2024 |
---|
Gliederung
Text
Secure Multi-Party Computation (SMPC) offers a powerful tool for collaborative healthcare research while preserving patient data privacy. However, existing SMPC frameworks often require separate executions for each desired computation and measurement period, limiting user flexibility. This research explores the potential of a client-driven metaprotocol for the Federated Secure Computing (FSC) framework and its SImple Multiparty ComputatiON (SIMON) protocol as a step towards more flexible SMPC solutions. This client-driven metaprotocol empowers users to specify and execute multiple calculations across diverse measurement periods within a single client-side code execution. This eliminates the need for repeated code executions and streamlines the analysis process. The metaprotocol offers a user-friendly interface, enabling researchers with limited cryptography expertise to leverage the power of SMPC for complex healthcare analyses. We evaluate the performance of the client-driven metaprotocol against a baseline iterative approach. Our evaluation demonstrates performance improvements compared to traditional iterative approaches, making this metaprotocol a valuable tool for advancing secure and efficient collaborative healthcare research.
The authors declare that they have no competing interests.
The authors declare that an ethics committee vote is not required.
References
- 1.
- Shamir A. How to share a secret. Commun ACM. 1979 Nov;22(11):612–613. DOI: 10.1145/359168.359176
- 2.
- Ballhausen H, Hinske LC. Federated Secure Computing. Informatics. 2023 Dec;10(4):4. DOI: 10.3390/informatics10040083
- 3.
- Wolfson M, Wallace SE, Masca N, Rowe G, Sheehan NA, Ferretti V, LaFlamme P, Tobin MD, Macleod J, Little J, Fortier I, Knoppers BM, Burton PR. DataSHIELD: resolving a conflict in contemporary bioscience - performing a pooled analysis of individual-level data without sharing the data. Int J Epidemiol. 2010 Oct;39(5):1372-82. DOI: 10.1093/ije/dyq111
- 4.
- Bogdanov D, Laur S, Willemson J. Sharemind: A Framework for Fast Privacy-Preserving Computations. In: Jajodia S, Lopez J, editors. Computer Security - ESORICS 2008. Berlin, Heidelberg: Springer, 2008. p. 192–206. DOI: 10.1007/978-3-540-88313-5_13
- 5.
- Wirth FN, Kussel T, Müller A, Hamacher K, Prasser F. EasySMPC: a simple but powerful no-code tool for practical secure multiparty computation. BMC Bioinformatics. 2022 Dec 9;23(1):531. DOI: 10.1186/s12859-022-05044-8