gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Modelling tumour immune cell interaction to guide treatment optimisation in chronic myeloid leukaemia

Meeting Abstract

  • Thomas Zerjatke - Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
  • Elena Karg - Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
  • Christoph Baldow - Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
  • Ingo Röder - Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany
  • Artur Fassoni - Instituto de Matemática e Computa\u231 ?ão, Universidade Federal de Itajubá, Itajubá, Brazil, Itajubá, Brazil
  • Ingmar Glauche - Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Dresden, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 934

doi: 10.3205/24gmds086, urn:nbn:de:0183-24gmds0869

Veröffentlicht: 6. September 2024

© 2024 Zerjatke et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Introduction: In chronic myeloid leukaemia (CML) most patients are treated successfully with tyrosine kinase inhibitors (TKI). However, as long-term drug administration is associated with side effects and high costs, there is considerable interest in the discontinuation of TKI treatment for well-responding patients. It has been speculated that the immune system plays a major role in the control of residual disease levels and influences whether a patient will remain in sustained treatment free remission (TFR) or not.

Methods: We have previously shown that mathematical models of CML that include an immunological component can accurately describe patient time courses after stopping treatment. Here, we apply our model to an extended data set of the DESTINY trial, which showed that dose reduction prior to cessation can increase the fraction of patients achieving sustained TFR.

Our approach uses molecular patient time-course data during and after TKI therapy to identify model parametrizations for each individual CML patient. These fits are then used as an in silico cohort for simulating various amended TFR schedules. Applying a re-sampling approach, we can derive estimates of recurrence times and fractions.

Results: We demonstrate that our model can be used to study how the cohort would behave under alternative TFR strategies, in which the timing and the amount of dose reduction are varied in a systematic manner. As a particular application, our simulations confirm clinical findings that the overall time of TKI treatment is a major determinant of TFR success, while at the same time indicating that lower dose TKI treatment is sufficient for many patients. Our model results further indicate that stepwise dose reduction prior to TKI cessation may decrease side effects and overall treatment costs while maintaining the overall success rate of TFR.

Conclusion: Our findings illustrate how mathematical modelling approaches could guide the planning of experimental and clinical studies.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.

The contribution has already been published: Bonn Conference on Mathematical Life Sciences 2023 [1]


References

1.
Karg E, Zerjatke T, Baldow C, Clark RE, Roeder I, Fassoni AC, Glauche I. Modelling tumour immune cell interaction to guide treatment optimisation in chronic myeloid leukaemia. In: Bonn Conference on Mathematical Life Sciences; 2023 Apr 17-20; Bonn.
2.
Karg E, Baldow C, Zerjatke T, Clark RE, Roeder I, Fassoni AC, et al. Modelling of immune response in chronic myeloid leukemia patients suggests potential for treatment reduction prior to cessation. Frontiers in Oncology. 2022;12:1028871.