gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Classification of veterinary subjects in medical literature and clinical summaries

Meeting Abstract

Suche in Medline nach

  • Marcel Hiltner - Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Medical Informatics, Biometrics and Epidemiology, Medical Informatics, Erlangen, Germany
  • Christian Gulden - Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Medical Informatics, Biometrics and Epidemiology, Medical Informatics, Erlangen, Germany
  • Dennis Toddenroth - Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Medical Informatics, Biometrics and Epidemiology, Medical Informatics, Erlangen, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 1109

doi: 10.3205/24gmds081, urn:nbn:de:0183-24gmds0812

Veröffentlicht: 6. September 2024

© 2024 Hiltner et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Human and veterinary medicine are practiced separately, but literature databases such as Pubmed include articles from both fields. This impedes supporting clinical decisions with automated information retrieval, because treatment considerations would not ignore the discipline of mixed sources. Here we investigate data-driven methods from computational linguistics for automatically distinguishing between human and veterinary medical texts. For our experiments, we selected language models after a literature review of benchmark datasets and reported performances. We generated a dataset of around 48,000 samples for binary text classification, specifically designed to differentiate between human medical and veterinary subjects. Using this dataset, we trained and fine-tuned classifiers based on selected transformer-based models as well as support vector machines (SVM). All trained classifiers achieved more than 99% accuracy, even though the transformer-based classifiers moderately outperformed the SVM-based one. Such classifiers could be applicable in clinical decision support functions that build on automated information retrieval.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.