gms | German Medical Science

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH)

08.09. - 13.09.2024, Dresden

Predicting Overall Survival of Glioblastoma Patients Using Deep Learning Classification Based on MRIs

Meeting Abstract

  • Katharina Ott - IT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany
  • Santiago Cepeda - Department of Neurosurgery, Río Hortega University Hospital, Valladolid, Spain
  • Dennis Hartmann - IT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany
  • Frank Kramer - IT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany
  • Dominik Müller - IT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany; Institute for Digital Medicine, University Hospital Augsburg, Augsburg, Germany

Gesundheit – gemeinsam. Kooperationstagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), Deutschen Gesellschaft für Sozialmedizin und Prävention (DGSMP), Deutschen Gesellschaft für Epidemiologie (DGEpi), Deutschen Gesellschaft für Medizinische Soziologie (DGMS) und der Deutschen Gesellschaft für Public Health (DGPH). Dresden, 08.-13.09.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAbstr. 815

doi: 10.3205/24gmds032, urn:nbn:de:0183-24gmds0325

Veröffentlicht: 6. September 2024

© 2024 Ott et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Introduction: Glioblastoma (GB) is one of the most aggressive tumors of the brain. Despite intensive treatment, the average overall survival (OS) is 15-18 months. Therefore, it is helpful to be able to assess a patient's OS to tailor treatment more specifically to the course of the disease. Automated analysis of routinely generated MRI sequences (FLAIR, T1, T1CE, and T2) using deep learning-based image classification has the potential to enable accurate OS predictions.

Methods: In this work, a method was developed and evaluated that classifies the OS into three classes – “short”, “medium” and “long”. For this purpose, the four MRI sequences of a person were corrected using bias-field correction and merged into one image. The pipeline was realized by a bagging model using 5-fold cross-validation and the ResNet50 architecture.

Results: The best model was able to achieve an F1-score of 0.51 and an accuracy of 0.67. In addition, this work enabled a largely clear differentiation of the “short” and “long” classes, which offers high clinical significance as decision support.

Conclusion: Automated analysis of MRI scans using deep learning-based image classification has the potential to enable accurate OS prediction in glioblastomas.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.