gms | German Medical Science

67. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 13. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e. V. (TMF)

21.08. - 25.08.2022, online

Impact of Record-Linkage Problems on Bias and Statistical Power in COVID-19 Vaccine-Safety Analyses using German Health-Care Data: A Simulation Study

Meeting Abstract

  • Robin Denz - Ruhr-Universität Bochum, Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Bochum, Germany
  • Hans Diebner - Ruhr-Universität Bochum, Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Bochum, Germany
  • Katharina Meiszl - Ruhr-Universität Bochum, Abteilung für medizinische Informatik, Biometrie und Epidemiologie, Bochum, Germany; Fachhochschule Dortmund, Fakultät für Informatik, Dortmund, Germany
  • Peter Ihle - Universitätsklinikum zu Köln, Medizinische Fakultät und Universitätsklnikum, PMV forschungsgruppe, Köln, Germany
  • Katrin Scholz - Universitätsklinikum zu Köln, Medizinische Fakultät und Universitätsklnikum, PMV forschungsgruppe, Köln, Germany
  • Ingo Meyer - Universität zu Köln, Medizinische Fakultät und Universitätsklnikum, PMV forschungsgruppe, Köln, Germany
  • Nina Timmesfeld - Ruhr-Universität Bochum, Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Bochum, Germany

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 67. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 13. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e.V. (TMF). sine loco [digital], 21.-25.08.2022. Düsseldorf: German Medical Science GMS Publishing House; 2022. DocAbstr. 171

doi: 10.3205/22gmds109, urn:nbn:de:0183-22gmds1097

Veröffentlicht: 19. August 2022

© 2022 Denz et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Introduction: With unprecedented speed, a mass of vaccines has been employed to combat the COVID-19 pandemic. In Germany alone, 171.876.955 doses of different vaccines have been used until 30.03.2022 [1]. Because of small sample sizes and strict inclusion criteria, previous phase-3 studies are not sufficient to ensure the safety of applied vaccines [2]. However, routine health-care data can be employed to mitigate these problems. Despite the large number of persons enrolled in health insurances, it is not trivial to analyse vaccination-related data in Germany. Generally, an individual’s vaccination status is recorded independently from the person’s other health-care data in separate databases, such as the Digitales Impfquoten-Monitoring database [1]. Due to a lack of a persistent and database-independent person identifier, error-prone record linkage techniques have to be used to merge these databases. We aim at quantifying the impact of these record-linkage errors on the power and bias of different analysis methods when assessing COVID-19 vaccine safety based on German health-care data.

Methods: We conducted a Monte Carlo simulation study including both the Self-Controlled Case Series (SCCS) [3] method and Cox-Regression with time-dependent covariates [4] under different proportions of linkage errors. The data have been generated using a discrete-time simulation, with vaccination-related parameters retrieved from the public database operated by the Robert-Koch Institute [1]. To make the simulation as realistic as possible, we have chosen baseline and vaccine-related increase of incidence for the well documented increased risk of acute myocarditis following a mRNA vaccination [5], [6]. However, the discussed results hold for more general cases as well.

Results: Both the SCCS method and the Cox-Regression produced largely unbiased estimates with a sufficiently high power when up to 10% of the potential matches were missing. With a rising proportion of missing matches, however, the performance of the Cox-Regression deteriorated sharply, showing a substantial amount of bias and a loss in power. Specifically, the cox-regression method underestimates the true risk of undesired events following vaccination. In contrast, the SCCS method still produced unbiased results in the average, although with decreased power.

Discussion: If the information on a person's vaccination status cannot be linked to the person's health-care data, then this person necessarily has to be considered unvaccinated in the analysis. The Cox regression, based on comparing states of different individuals, consequently underestimates the true risk and most likely overestimates the baseline incidence. Since the SCCS method does not compare different individuals, but different time periods within each individual, this method is robust against random linkage. In practice, however, time-varying confounders such as, e.g., the COVID-19 infection, might complicate the mere use of SCCS designs. Due to their different susceptibilities to different types of biases, it has been recommended to use both analysis strategies [7].

Conclusion: Small amounts of random linkage errors have little impact on both bias and power of the analysis regardless of which method has been chosen. Increasing proportions of missing matches cause increasing bias resulting from Cox-regressions but not from SCCS analyses.

The authors declare that they have no competing interests.

The authors declare that an ethics committee vote is not required.


References

1.
Robert-Koch Institute. Impfquotenmonitoring. 2022. Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquoten-Tab.html Externer Link
2.
Rogers AS. Adverse drug events: identification and attribution. Drug Intell Clin Pharm. 1987;21(11):915-920. DOI: 10.1177/106002808702101114 Externer Link
3.
Farrington P, Pugh S, Colville A, Flower A, Nash J, Morgan-Capner P, Rush M, Miller E. A new method for active surveillance of adverse events from diphtheria/tetanus/pertussis and measles/mumps/rubella vaccines. Lancet. 1995;345(8949):567-569. DOI: 10.1016/s0140-6736(95)90471-9 Externer Link
4.
Zhang Z, Reinikainen J, Adeleke KA, Pieterse ME, Groothuis-Oudshoorn CGM. Time-varying covariates and coefficients in Cox regression models. Ann Transl Med. 2018;6(7):1-10. DOI: 10.21037%2Fatm.2018.02.12 Externer Link
5.
Olejniczak M, Schwartz M, Webber E, Shaffer A, and Perry TE. Viral Myocarditis: Incidence, Diagnosis and Management. J Cardiothorac Vasc Anesth. 2020;43(6):1591-1601. DOI: 10.1053/j.jvca.2019.12.052 Externer Link
6.
Barda, N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med. 2021;385(12):1078-1090. DOI: 10.1056/nejmoa2110475 Externer Link
7.
Maclure M, Fireman B, Nelson JC, Hua W, Shoaibi A, Paredes A, Madigan D. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol Drug Saf. 2012;21(Suppl 1):50-61. DOI: 10.1002/pds.2330 Externer Link