gms | German Medical Science

67. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 13. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e. V. (TMF)

21.08. - 25.08.2022, online

Development of a FHIR data model for participant real time monitoring with a patient reported outcome (PRO) app

Meeting Abstract

  • Florian Schrinner - Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
  • Awais Akhtar - Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
  • Clint Hansen - Department of Neurology, UKSH Kiel, Kiel, Germany
  • Florian Tran - Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany; Department of Internal Medicine I, UKSH Kiel, Kiel, Germany
  • Stefan Schreiber - Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
  • Walter Maetzler - Department of Neurology, UKSH Kiel, Kiel, Germany
  • Andre Franke - Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 67. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (GMDS), 13. Jahreskongress der Technologie- und Methodenplattform für die vernetzte medizinische Forschung e.V. (TMF). sine loco [digital], 21.-25.08.2022. Düsseldorf: German Medical Science GMS Publishing House; 2022. DocAbstr. 213

doi: 10.3205/22gmds076, urn:nbn:de:0183-22gmds0765

Veröffentlicht: 19. August 2022

© 2022 Schrinner et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Introduction: Modern mobile technology used for medical purposes allows assessing daily life behavior and quality of life in a new dimension of precision. Parameters derived from such technique can increase treatment quality [1], [2], [3]. Studies in IBD (inflammatory bowel disease) patients show that co-morbidities [4], [5] are associated with the course of the disease, which reflects in changes in activity, movement and sleep quality. Reaction to these changes, measured by sensors and patient reported outcomes (PRO) can change the course of the disease. A System to establish such endpoints was developed for a research project (GUIDE-IBD) [6]. For the patient reported outcome App, a FHIR data structure was developed to store/send collected data, to configure the App according to the study protocol and to define the displayed questionnaires.

State of the art: In 2019, when this project [6] was initiated, the FHIR standard [7] was just starting to get more traction, only two publications [8], [9] showed approaches to Map Research Protocols to FHIR. They showed that there are unmet needs to solve the use case and that it is complex to model the relationships between the different resources and gave hints to solve these problems. Even with the fast developing efforts of the German Medical Informatics Initiative [10], KBV [11], Gematik [12] and HL7 Deutschland [13] there is less experience and work for defining a study protocol and linking to the collected data. The Resource ResearchStudy is still maturity level 1.

Concept: An App was developed to collect PROs during the day-to-day life of the participant by presenting different questionnaire tasks according to the study protocol. FHIR was defined as the data structure for the App. Resources are the main building blocks of FHIR. The Study is described with the ResearchStudy Resource, it holds the general information about the study. Participants are represented by the Patient Resource and are connected to the ResearchStudy using the ResearchSubject Resource. Questionnaires are defined inside the Questionnaire Resource following the Structured Data Capture implementation guide [14] and used to render the filling UI of the App. The filling process stores the answers inside a QuestionnaireResponse Resource. The definition of the study protocol is solved with the PlanDefinition Resource, which specifies only parts of the protocol regarding the app. It schedules the questionnaires to be filled by the participant and the study visits. Sturdy visits are represented by the Encounter Resource. All tasks in the app are calculated from the PlanDefinition and stored as ServiceRequest Resource. The ServiceRequest connects all Resources. The collected data is sent to the backend in an encrypted transactional bundle.

Implementation: The concept was implemented, is currently used and tested in the project [6]. For the implementation of the FHIR components inside the App and to create a basic FHIR server, the HAPI FHIR libraries [15] were used.

Lessons learned: It is a very reduced model which is fulfilling the requirements of the system, for a next iteration with a more detailed study protocol and more data types the model need to be extended.

The authors declare that they have no competing interests.

The authors declare that a positive ethics committee vote has been obtained.


References

1.
Jong MJ, Meulen-de Jong AE, Romberg-Camps MJ, Becx MC, Maljaars JP, Cilissen M, et al. Telemedicine for management of inflammatory bowel disease (myIBDcoach): a pragmatic, multicentre, randomised controlled trial. The Lancet. 2017;390:959–68. DOI: 10.1016/S0140-6736(17)31327-2 Externer Link
2.
McCombie A, Walmsley R, Barclay M, Ho C, Langlotz T, Regenbrecht H, et al. A Noninferiority Randomized Clinical Trial of the Use of the Smartphone-Based Health Applications IBDsmart and IBDoc in the Care of Inflammatory Bowel Disease Patients. Inflamm Bowel Dis. 2020;26:1098–109. DOI: 10.1093/ibd/izz252 Externer Link
3.
George LA, Cross RK. Remote Monitoring and Telemedicine in IBD: Are We There Yet? Curr Gastroenterol Rep. 2020;22:12. DOI: 10.1007/s11894-020-0751-0 Externer Link
4.
Hindryckx P, Laukens D, D'Amico F, Danese S. Unmet Needs in IBD: the Case of Fatigue. Clin Rev Allergy Immunol. 2018;55:368–78. DOI: 10.1007/s12016-017-8641-4 Externer Link
5.
Bernstein CN, Hitchon CA, Walld R, Bolton JM, Sareen J, Walker JR, et al. Increased Burden of Psychiatric Disorders in Inflammatory Bowel Disease. Inflamm Bowel Dis. 2019;25:360–8. DOI: 10.1093/ibd/izy235 Externer Link
6.
GUIDE-IBD SP3 - Patientenbezogene eHealth Messungen in Echtzeit. [Accessed 2022 Apr 13]. Available from: https://www.sys-med.de/de/demonstratoren/guide-ibd/sp-3/ Externer Link
7.
HL7. FHIR Standard Homepage. 2019 Nov 25 [Accessed 2022 Apr 14]. Available from: https://www.hl7.org/fhir/index.html Externer Link
8.
Leroux H, Metke-Jimenez A, Lawley MJ. Towards achieving semantic interoperability of clinical study data with FHIR. J Biomed Semantics. 2017;8:41. DOI: 10.1186/s13326-017-0148-7 Externer Link
9.
Döring M. Evaluating an Approach for mapping FHIR Profiles to Research Protocols [Masterthesis]. Hochschulbibliothek der Technischen Hochschule Köln; 2018. urn:nbn:de:hbz:832-epub4-12915 Externer Link
10.
Firely. Medizininformatik Initiative. In: SIMPLIFIER.NET. [Accessed 2022 Apr 14]. Available from:https://simplifier.net/organization/koordinationsstellemii/~home Externer Link
11.
Firely. Kassenärztliche Bundesvereinigung (KBV). In: SIMPLIFIER.NET. [Accessed 2022 Apr 14]. Available from: https://simplifier.net/organization/kassenrztlichebundesvereinigungkbv Externer Link
12.
Firely. gematik. In: SIMPLIFIER.NET. [Accessed 2022 Apr 14]. Available from:https://simplifier.net/organization/gematik Externer Link
13.
Firely. HL7 Deutschland e.V. In: SIMPLIFIER.NET. [Accessed 2022 Apr 14]. Available from: https://simplifier.net/organization/hl7deutschlandev/~home Externer Link
14.
FHIR Infrastructure Work Group. HL7.FHIR.UV.SDC\SDC Home Page - FHIR v4.0.1. 2022 Mar 8 [Accessed 2022 Apr 14]. Available from:http://hl7.org/fhir/uv/sdc/ Externer Link
15.
HAPI FHIR - The Open Source FHIR API for Java. [Accessed 2022 Apr 14]. Available from: https://hapifhir.io/ Externer Link