gms | German Medical Science

50. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (gmds)
12. Jahrestagung der Deutschen Arbeitsgemeinschaft für Epidemiologie (dae)

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie
Deutsche Arbeitsgemeinschaft für Epidemiologie

12. bis 15.09.2005, Freiburg im Breisgau

Increased power for affected sib pairs: weighting by marker informativity

Meeting Abstract

Suche in Medline nach

  • Daniel Franke - Universität zu Lübeck, Lübeck
  • Andreas Ziegler - Universität zu Lübeck, Lübeck

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. Deutsche Arbeitsgemeinschaft für Epidemiologie. 50. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (gmds), 12. Jahrestagung der Deutschen Arbeitsgemeinschaft für Epidemiologie. Freiburg im Breisgau, 12.-15.09.2005. Düsseldorf, Köln: German Medical Science; 2005. Doc05gmds160

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/gmds2005/05gmds295.shtml

Veröffentlicht: 8. September 2005

© 2005 Franke et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

For the analysis of affected sib pairs (ASPs), a variety of test statistics is applied in genome wide scans using microsatellite markers. Even in multipoint analyses, these statistics might not fully exploit the power of a given sample, as they do not account for incomplete informativity of an ASP. For meta-analyses of linkage and association studies, it has been shown recently that weighting by informativity increases statistical power. Adopting this idea, the first aim of this paper is therefore to introduce a new class of tests for ASPs based on the mean test. To take into account how much informativity an ASP contributes, we weight families inversely proportional to their marker informativity. The weighting scheme is obtained by using the de Finetti representation of the distribution of identity by descent values. We derive the limiting distribution of the weighted mean test and demonstrate the validity of the proposed test. We show that it is extremely more powerful than the classical mean test in the case of low marker informativity. In the second part of the paper, we propose a Monte-Carlo simulation approach for evaluating significance in ASPs. We demonstrate the validity of the simulation approach for both the classical and the weighted mean test. Finally, we illustrate the use of the weighted mean test by re-analyzing two published data sets. In both applications, the maximal LOD score of the weighted mean test is 0.6 higher than the classical mean test.

Grant sponsor: DFG, grant number: ZI 591/12-1