gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2024)

22. - 25.10.2024, Berlin

NIR-fluorescence for image-guided ceramic fracture removal surgery

Meeting Abstract

Suche in Medline nach

  • presenting/speaker Sebastian Walter - Universitätsklinikum Köln, Köln, Germany
  • Inge Herrmann - Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland
  • Robert Nissler - Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2024). Berlin, 22.-25.10.2024. Düsseldorf: German Medical Science GMS Publishing House; 2024. DocAB86-2421

doi: 10.3205/24dkou482, urn:nbn:de:0183-24dkou4821

Veröffentlicht: 21. Oktober 2024

© 2024 Walter et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objectives: Hip arthroplasty effectively treats advanced osteoarthritis and has therefore been entitled as “operation of the 20th century”. With demographic shifts, the USA alone is projected to perform up to 850,000 arthroplasties annually by 2030. Many implants now feature a ceramic head, valued for strength and wear resistance. Nonetheless, a fraction, up to 0.03% may fracture during their lifespan, demanding complex removal procedures.

Methods: To address this, a radiation-free, fluorescence-based image-guided surgical technique is proposed. The method uses ceramics' inherent fluorescence, demonstrated through chemical and optical analysis of prevalent implant types. Specifically, Biolox delta® implants exhibit strong fluorescence around 700 nm with a 74% photoluminescence quantum yield.

Results and conclusion: We identified emission tails extending into the near-infrared (NIR-I) biological transparency range, forming a vital prerequisite for the label-free visualization of fragments. This ruby-like fluorescence can be attributed to Cr within the zirconia-toughened alumina matrix, enabling the detection of even deep-seated millimeter-sized fragments via camera-assisted techniques. Additionally, fluorescence microscopy detects µm-sized ceramic particles, enabling debris visualization in synovial fluid or histological samples. This label-free optical imaging approach employs readily accessible equipment and can seamlessly transition to clinical settings without significant regulatory barriers, thereby enhancing the safety, efficiency, and minimally invasive nature of fractured ceramic implant removal.