gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2018)

23.10. - 26.10.2018, Berlin

Fibrous demineralized bone matrix (DBM) improves bone marrow mononuclear cell (BMC)-supported bone healing in large femoral bone defects in rats

Meeting Abstract

  • presenting/speaker René D. Verboket - Johann Wolfgang Goethe-Universität, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Frankfurt, Germany
  • Tanja Irrle - Johann Wolfgang Goethe-Universität, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Frankfurt, Germany
  • Yannic Busche - Johann Wolfgang Goethe-Universität, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Frankfurt, Germany
  • Alexander Schaible - Johann Wolfgang Goethe Universität, Universitätsklinikum Frankfurt am Main, Wissenschaftliches Labor der Chirurgie, Frankfurt, Germany
  • Jan C. Brune - Deutsche Gesellschaft für Zell- und Gewebsersatz, Berlin, Germany
  • Ingo Marzi - Universitätsklinikum Frankfurt, Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Frankfurt, Germany
  • Dirk Henrich - Johann Wolfgang Goethe Universität, Universitätsklinikum Frankfurt am Main, Wissenschaftliches Labor der Chirurgie, Frankfurt, Germany

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2018). Berlin, 23.-26.10.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. DocGF20-1181

doi: 10.3205/18dkou521, urn:nbn:de:0183-18dkou5211

Veröffentlicht: 6. November 2018

© 2018 Verboket et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objectives: Optimal regeneration of large bone defects is a major objective in trauma surgery and orthopedics. Bone marrow mononuclear cell (BMC) supported bone healing was shown to be efficient in animal experiments and to be equivalent to mesenchymal and endothelial progenitor cells. Furthermore, first in human trials have started. The application of BMC is often improved by their immobilization on a scaffold. A newly developed kind of scaffold is fibrous demineralized bone matrix. Fibrous materials show a high capacity of liquid absorption and aim at being an optimal scaffold for use with cell therapeutics. The objective of this study is to evaluate fibrous DBM vs. DBM granules and vs. the current gold standard syngene cancellous bone.

Methods: A total of 65 male SD-rats, 250g weight, were assigned to 5 treatment groups:

1.
Fibrous demineralized bone matrix (FDBM)
2.
Fibrous demineralized bone matrix densely packed (120%)
3.
DBM granules
4.
DBM granules + 5% calcium
5.
Syngene cancellous bone

BMC were acquired from donor rats, combined with the different scaffolds and placed into 5mm-femoral bone defects. Animals were sacrificed after 8 weeks and bone mineral density (BMD), biomechanical stability and histology was assessed. A Kruskal-Wallis-test with Bonferroni-Holm post hoc analysis was used for statistical evaluation.

Results: The bone mineral density (BMD) in the defect area of the fiber groups (1: 0.9884; 2: 1.003) is significantly lower than in the syngene cancellous group (5: 1.0653) but not significantly lower than in the DBM granules group (4: 1.0327).

The ultimate loads of both of the FDBM group (median 64.955 N) and the syngene cancellous group (median 42.425 N) were significantly higher than in the DBM granules group (median 17.975 N). No significant differences were found among the fiber groups (1, 2) and, there were no significant differences between the FDBM group (1) and the syngene cancellous group (5). The highest median over all groups was shown in the FDBM group (1).

Discussion: We demonstrated that fibrous DBM combined with BMC is a new approach in bone healing. Fibrous DBM seems to be similar in ultimate load and bending stiffness to syngene cancellous bone. Further improvement in the application of fibers might be gained through the use of a masquelet membrane.