gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2015)

20.10. - 23.10.2015, Berlin

Inter- and intraobserver variability of virtual 3D femur fracture reduction using a joystick

Meeting Abstract

  • presenting/speaker Martin Panzica - Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Germany
  • Eduardo M. Suero - Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Germany
  • Ralf Westphal - TU Braunschweig, Institut für Robotik und Prozessinformatik, Braunschweig, Germany
  • Musa Citak - Medizinische Hochschule Hannover, Unfallchirurgie, Hannover, Germany
  • Volker Stüber - Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Germany
  • Ulrich Lueke - Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Germany
  • Christian Krettek - Medizinische Hochschule Hannover, Klinik für Unfallchirurgie, Hannover, Germany
  • Timo Stübig - Medizinische Hochschule Hannover, Unfallchirurgische Klinik, Hannover, Germany

Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2015). Berlin, 20.-23.10.2015. Düsseldorf: German Medical Science GMS Publishing House; 2015. DocPO23-1658

doi: 10.3205/15dkou739, urn:nbn:de:0183-15dkou7394

Veröffentlicht: 5. Oktober 2015

© 2015 Panzica et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objectives: Femoral shaft fractures are commonly treated with intramedullary nailing. While the technique leads to good overall outcomes, there are several problems associated with it, e.g., high radiation exposure and rotational malalignment. We have developed a combined computer-assisted and robotic framework for implementation in the treatment of femoral fractures in order to improve reduction accuracy and to reduce the incidence of femoral malrotation. In a previous study, we determined that a commonly used joystick device was cost-effective for performing telemanipulated reduction of femoral shaft fractures. In the current study, we evaluate the inter- and intraobserver variability of the joystick device.

Methods: Five examiners participated in the study. The examiners were asked to perform a series of virtual femur fracture reductions in computer program developed to render and manipulate 3D renderings of femur bone fragments. We had previously created 10 cadaveric fracture models, which were then scanned using both CT and ISO-C 3D to generate 20 3D models. Each examiner performed virtual 3D reduction of the twenty models in two separate occasions. Using intraclass correlation, we calculated the inter- and intraobserver variability for the reduction times, as well as the learning curve

Results and Conclusion: We observed high intraobserver reliability in the fracture reduction times (P<0.05). Some interobserver variability was detected (P< 0.05). No appreciable learning curve was seen (P >0.05).

The joystick device offers a cost-effective approach to fracture telemanipulation compared to more expensive devices. Additionally, it offers good reproducibility and does not require extensive training. This device can be successfully implemented in robotic and computer navigated femoral fracture telemanipulation workflows.