gms | German Medical Science

Deutscher Kongress für Orthopädie und Unfallchirurgie
72. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie, 94. Tagung der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie und 49. Tagung des Berufsverbandes der Fachärzte für Orthopädie und Unfallchirurgie

22. - 25.10.2008, Berlin

Generation of metallic nanocolloidal wear particles and their reaction on inflammatory cells

Meeting Abstract

  • M. Weuster - Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
  • L.E. Podleska - Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Sarkomzentrum/Klinik für Unfallchirurgie, Essen, Germany
  • B. Hussman - Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Sarkomzentrum/Klinik für Unfallchirurgie, Essen, Germany
  • A. Seekamp - Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
  • G. Taeger - Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Sarkomzentrum/Klinik für Unfallchirurgie, Essen, Germany

Deutscher Kongress für Orthopädie und Unfallchirurgie. 72. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie, 94. Tagung der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie, 49. Tagung des Berufsverbandes der Fachärzte für Orthopädie. Berlin, 22.-25.10.2008. Düsseldorf: German Medical Science GMS Publishing House; 2008. DocWI40-1532

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dkou2008/08dkou224.shtml

Veröffentlicht: 16. Oktober 2008

© 2008 Weuster et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

The interaction of metallic wear derived from orthopaedic implants and the surrounding cells is still of major interest. In the ongoing discussion whether implants manufactured of titanium and its alloys or implants manufactured from stainless steel do perform better in respect of their biocompatibility, wear and particles of submicron size (nanocolloids) are of greatest interest. Thus it was the purpose of this study to create nanocolloidal particles within a physiological environment and to investigate their impact on mononuclear cells in vitro.

With an oscillating pin-on-disc under sterile conditions and in a medium consisting of cell culture medium (RPMI-1640, supplemented with 2% FCS, Pen/Strepto and L-Glu) wear was produced from stainless steel (316L) and Titanium alloy (TiAl6V4). By centrifugation the wear medium was separated in a particle fraction with particles 200μm and in a nanocolloidal fraction with complexes 200μm according to Stoke´s law. The concentration of alloy components was measured by optical emission plasma spectrometry (ICP-OES). Murine macrophages (J-774) were incubated with increasing concentrations of both wear fractions (12,5%, 25% and 50% by volume). Supernatants from cell culture were taken for analysis of the proinflammatory cytokine TNF-α, plus MTT-assay to determine the vitality of the cells.

Particle fractions of 316L contained 9μg/ml of Iron whereas 2µg/ml Iron was measured in the nanocolloidal fractions. The concentrations of Ti were similar to those of 316L in all nanocolloidal fractions however, Ti was found with exceeding 650ug/ml in particle fractions. Looking at the vitality of J-774 cells after incubation with increasing amounts of nanocolloids with 12.5%, 25% and 50% there was a distinct and significant decrease in vitality with 71%, 50% and 8% vital cells respectively for 316L and with 67%, 50% and 22% vital cells for Ti-alloy. Contamination of macrophages with supernatants of the particle fractions did not show any significant impact on cell vitality without any dose dependent changes.

The results of TNF-α synthesis indicated a close correlation to the decreasing vitality already seen in the MTT-assay. Values decrease from about 180pg/ml TNF-α at a concentration of 12, 5 % to about 100pg/ml at a concentration of 50 %, for both 316L and Titanium. No difference could be detected for 316L-particles. The sampled data fluctuate around 200pg/ml TNF-α, whereas Titanium particles induce a slight increase of TNF-α production from 180 pg/ml up to 250 pg/ml.

This paper shows the feasibility of generating nanocolloidal complexes from orthopaedic implants in a physiologic environment. There are some indications that these nanocolloids have a strong effect on the vitality of mononuclear cells and thus impede TNF-secretion compared to particles, where only Titanium showed a clear increase of TNF production. As an outlook we expect that nanocolloidal particles bring a new aspect into biomaterial research.