gms | German Medical Science

72. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Polnischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

06.06. - 09.06.2021

Organic thin film transistor (OTFT)-based leads for recording and modulation of intracerebral neural activity

Organische Dünnschichttransistor-basierte Elektroden zur Messung und Modulation intrazerebraler Nervenaktivität

Meeting Abstract

  • Olka Kaveh - PL Germany GmbH, Dresden, Deutschland
  • Karsten Neumann - PL Germany GmbH, Dresden, Deutschland
  • Gabriele Schackert - Universitätsklinikum Carl Gustav Carus Dresden, Klinik und Poliklinik für Neurochirurgie, Dresden, Deutschland
  • presenting/speaker Witold H. Polanski - Universitätsklinikum Carl Gustav Carus Dresden, Klinik und Poliklinik für Neurochirurgie, Dresden, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 72. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Polnischen Gesellschaft für Neurochirurgie. sine loco [digital], 06.-09.06.2021. Düsseldorf: German Medical Science GMS Publishing House; 2021. DocP217

doi: 10.3205/21dgnc498, urn:nbn:de:0183-21dgnc4986

Veröffentlicht: 4. Juni 2021

© 2021 Kaveh et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Deep brain stimulation (DBS) is an accepted treatment option for various neurological diseases. Common commercial used leads enables only coarsemeshed stimulation and neurosensing due to the comparative big contacts and doesn’t meet the needed requirements for highly selective and adaptive modulation of fine neuronal circuits. To enable more precise and selective measurement and modulation of neural activity, we developed a high resolution organic thin film transistor (OTFT)-based lead.

Methods: The OTFT active matrix array of the lead acts as a voltage-controlled current source amplifier, whereby sensing is integrated to the stimulating contact and provides a high resolution, signal to noise ratio, sensitivity and selectivity. With a higher signal to noise ratio, the recording of neuronal action is more accurate. This OTFT matrix was fabricated using an organic semiconductor and organic dielectric with organic electronic technology. The flexible substrate was mounted on syringe needles to ensure a controlled insertion of the flexible probe.

Results: The proportion of current coming from each contact can be adjusted to range of 0-10mA amplitude, 50-500µs pulse width, 2-250Hz and support multipolar configuration. It is possible to localize and modulate the current shaping and reach better stimulation efficiency, less side effect and the therapeutic effect, hypothetically. The lead consists of 6x40 contacts in a length of 20mm with a diameter of 1.5mm was designed to enable a high resolution for stimulation/sensing in the target region.

Conclusion: A recent in vitro study showed a good biocompatibility of OTFT arrays regarding neuronal cell cultures and demonstrated that it is a pronouncing devise for neural bioengineering. This unique lead design allows a simultaneous and directional highly selective measuring of single neuronal cell action potentials and local potential fields inside the brain and a precise, directional stimulation dependent on physiological or pathological signals. In the next step, the lead will be implanted in animals to proof the feasibility and safety. Furthermore, a mathematical algorithm is needed to process and condense the high number of obtained data for clinical use.