gms | German Medical Science

72. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Polnischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

06.06. - 09.06.2021

Porcine serosa as in vitro 3D-model for testing glioblastoma drug treatment

Serosa als in vitro 3D-Modell für Medikamententests zur Behandlung von Glioblastoma multiforme

Meeting Abstract

  • presenting/speaker Ellina Schulz - Universitätsklinikum Julius Maximilians Universität Würzburg, Neurochirurgische Klinik und Poliklinik Tumorbiologisches Labor, Würzburg, Deutschland
  • Clara Keller - Universitätsklinikum Julius Maximilians Universität Würzburg, Neurochirurgische Klinik und Poliklinik Tumorbiologisches Labor, Würzburg, Deutschland
  • Sarah Nietzer - Universitätsklinikum Julius Maximilians Universität Würzburg, Lehrstuhl Tissue Engineering und Regenerative Medizin (TERM) und Fraunhofer-Institut für Silicatforschung ISC Translationszentrum Regenerative Therapien, Würzburg, Deutschland
  • Ralf-Ingo Ernestus - Universitätsklinikum Julius Maximilians Universität Würzburg, Neurochirurgische Klinik und Poliklinik, Würzburg, Deutschland
  • Mario Löhr - Universitätsklinikum Julius Maximilians Universität Würzburg, Neurochirurgische Klinik und Poliklinik Tumorbiologisches Labor, Würzburg, Deutschland
  • Carsten Hagemann - Universitätsklinikum Julius Maximilians Universität Würzburg, Neurochirurgische Klinik und Poliklinik Tumorbiologisches Labor, Würzburg, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 72. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Polnischen Gesellschaft für Neurochirurgie. sine loco [digital], 06.-09.06.2021. Düsseldorf: German Medical Science GMS Publishing House; 2021. DocP144

doi: 10.3205/21dgnc430, urn:nbn:de:0183-21dgnc4304

Veröffentlicht: 4. Juni 2021

© 2021 Schulz et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Suitability of Two-dimensional (2D) cell culture tumour models is limited in view of examining drugs for the treatment of glioblastomas (GBM). Three-dimensional (3D) cell culture models bridge the gap between 2D cell culture experiments and in vivo animal models. We developed such a 3D in vitro model based on a biological scaffold derived from decellularised porcine jejunum. This model allows to grow GBM cells inside a collagen matrix named SISser (small intestine submucosa and serosa), to form a 3D structure and to study the efficacy of chemotherapeutic agents. Here, we present first data on developing this GBM 3D model utilizing different GBM cell lines and tested its eligibility by assessing cytotoxic effects of cisplatin.

Methods: Porcine intestine was decellularised and mounted onto sterile cell crowns. The GBM cell lines U87 and GaMG were seeded onto the serosal side of the matrix SISser and cultured for at least 10 days. After that, the cells were treated for 48h with 5µM and 10µM cisplatin, respectively. The cell-containing SISser was fixed, paraffin-embedded and sectioned (3µm). DNA double-strand breaks (γH2AX) and glial fiber acidic protein (GFAP) were visualised by immunofluorescence staining. Images were evaluated by applying a specialised macro in ImageJ.

Results: We successfully established an in vitro 3D GBM cell culture model by growing human U87 and GaMG cells on a porcine serosa-containing matrix. The GBM cells displayed a 3D growth pattern after 10 days of culture. Adding 5µM and 10µM cisplatin to the culture led to a three- and fourfold increase of cells with DNA-double-strand breaks compared to the control, respectively, as shown by immunofluorescence staining of γH2AX.

Conclusion: Our proof-of-principle experiment revealed that the porcine matrix SISser is well suited as a 3D matrix to grow GBM cells 3-dimensionally for investigating new GBM-targeting chemotherapeutics. This GBM 3D cell culture model has the potential to serve as an alternative or supplement to animal experiments while avoiding the disadvantages of 2D cell culture.