gms | German Medical Science

71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

21.06. - 24.06.2020

Time course of eRNA (extracellular RNA) expression in aneurysmal SAH (subarachnoid haemorrhage)

Zeitlicher Verlauf von eRNA (extrazellulärer RNA) im Rahmen der anerurysmatischen SAB (Subarachnoidalblutung)

Meeting Abstract

  • presenting/speaker Ran Xu - Charité – Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Deutschland
  • Silvia Fischer - Justus-Liebig-Universität Gießen, Gießen, Deutschland
  • Shuheng Liu - Charité – Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Deutschland
  • Katharina Tielking - Charité – Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Deutschland
  • Ulf Christoph Schneider - Charité – Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Deutschland
  • Klaus Preissner - Justus-Liebig-Universität Gießen, Gießen, Deutschland
  • Peter Vajkoczy - Charité – Universitätsmedizin Berlin, Klinik für Neurochirurgie, Berlin, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 71. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), 9. Joint Meeting mit der Japanischen Gesellschaft für Neurochirurgie. sine loco [digital], 21.-24.06.2020. Düsseldorf: German Medical Science GMS Publishing House; 2020. DocP095

doi: 10.3205/20dgnc383, urn:nbn:de:0183-20dgnc3834

Veröffentlicht: 26. Juni 2020

© 2020 Xu et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Previous research hypothesizes that eRNA is released upon tissue injury and subsequently activates inflammatory signaling. Previous data from our laboratory showed that eRNA is released into the subarchnoid space in an animal model of experimental SAH, and is associated with an activation of the innate immune system. This study aims to quantify eRNA release and investigate RNAse activity in patient samples.

Methods: CSF and EDTA samples from patients with aneurysmal SAH (n=20) were collected within the scope of a prospective study after acquiring approval by the ethics committee board. Control samples (n=5) were acquired from pseudotumor cerebri patients and healthy individuals. Sampling was conducted at four time points after bleeding onset (day 1,4,7,14). CSF and blood samples were spun down twice at 500g for 5min at 4C° to remove debris and blood. For eRNA quantification, 80U/ml RNAse Inhibitor was added. Isolation of RNA was conducted with the Master Pure RNA Purification Kit; quantification was done with the QubitTM RNA Assay Kit (Invitrogen) and measured with the fluorometer. For RNAse activity, supernatant was added to poly(c)solution, RNAse buffer, and BSA solution and incubated at 37C° for 15min. Substrate degradation was determined by measuring the absorbance of the supernatant at 280nm.

Results: In the acute stage of SAH, we found a significant increase of eRNA in the CSF on day 1 (Ctrl vs. SAH: 2ng/ml vs. 351.4ng/ml;p=0.033). In concomitance, RNAse activity was significantly decreasedt in the CSF of SAH patients (Ctrl. vs. SAH: 136.9U/ml vs. 75.23 U/ml; p=0.045). In peripheral blood samples, an eRNA peak was observed at a later time point on day 14 (Ctrl. vs. SAH: 361ng/ml vs. 736.5ng/ml;p=0.039). This was paralleled by a significant increase of RNAse activity in EDTA blood (Ctrl. vs. SAH: 76.44U/ml vs. 143.1U/ml; p=0.004).

Conclusion: Aneurysmal SAH is associated with a significant increase in eRNA in the CSF, paralleled by a decrease in RNAse activity, underpinning previously described mechanistic data on our mouse model. Hence, inhibition of eRNA may represent a potential strategy in modulating neuroinflammatory signaling but further ex vivo studies are needed to understand the underlying pathway mechanism.

Figure 1 [Fig. 1]