gms | German Medical Science

70. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Skandinavischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

12.05. - 15.05.2019, Würzburg

The dielectric properties of intracranial tumours

Die bioelektrischen Eigenschaften von intrakraniellen Tumoren

Meeting Abstract

  • presenting/speaker Martin Proescholdt - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Amer Haj - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Annette Lohmeier - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Eva-Maria Stoerr - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Alexander Brawanski - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Petra Eberl - Universitätsklinikum Regensburg, Klinik und Poliklinik für Neurochirurgie, Regensburg, Deutschland
  • Zeev Bomzon - NovoCure Ltd., Haifa, Israel
  • Hadas Sara Hershkovich - NovoCure Ltd., Haifa, Israel

Deutsche Gesellschaft für Neurochirurgie. 70. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Skandinavischen Gesellschaft für Neurochirurgie. Würzburg, 12.-15.05.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocP169

doi: 10.3205/19dgnc505, urn:nbn:de:0183-19dgnc5054

Veröffentlicht: 8. Mai 2019

© 2019 Proescholdt et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Recently, tumor treating fields (TTFields) have been established as an effective new approach for the treatment of newly diagnosed GBM. One of the most crucial parameters defining the treatment efficacy of TTFields is the electric field intensity. The electric properties of the normal intracranial compartments are well established, however, there is no data available about the electric properties of tumor tissue. In this study we determined the dieclectric properties of malignant glioma compared to other brain tumors by analyzing resected tissue following a fast acquisition protocol. To account for the intratumoral heterogeneity, different regions of the tumor were sampled and analyzed separately.

Methods: Thirty-two patients with tumors of different histology and malignancy grade have been recruited [low grade glioma (n=7), glioblastoma (GBM; n=7); meningioma (n=12) and brain metastases (n=6)]. Tissue probes were acquired from the vital and perinecrotic compartment if present. From each region, five tissue probes were sampled. Immediately after acquisition, a tissue fragment was dissected from each sample and was placed into a cylindrical cell with a known diameter. Two parallel electrodes were placed on both sides of the sample and the thickness of the tissue was measured using a micrometer. The impedance was recorded at frequencies 20Hz-1MHz. The measured impedance was translated into dielectric properties of the sample (conductivity and relative permittivity) based on the parallel plate model, the recorded complex impedance and the geometry of the samples. Each tissue probe was fixed, H&E stained and histologically analyzed for tumor cell count and specific tissue features.

Results: As a reference, grey and white matter tissue samples from mouse brains were used. We found significant differences between the tumor entities with meningiomas showing the lowest and GBM tissue the highest conductivity values. Consistently, the perinecrotic areas displayed lower values compared to the solid tumor compartment. Also, we found significant intratumoral heterogeneity in tumors of one specific histological class.

Conclusion: The dielectric properties of intracranial tumors depend on histological class and malignancy grade and show significant intratumoral heterogeneity. These results may allow a more precise modelling of electric field intensity distribution within the tumor.