gms | German Medical Science

70. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Skandinavischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

12.05. - 15.05.2019, Würzburg

Stereotactic electrode placement for SEEG – advanced 3D-visualisation planning and predictors of accuracy

Stereotaktische Implantation von Stereo-EEG Elektroden – Planung mit moderner 3D Visualisierung und prädiktive Faktoren für die Implantationsgenauigkeit

Meeting Abstract

  • presenting/speaker Peter Reinacher - Universitätsklinikum Freiburg, Abteilung Stereotaktische und Funktionelle Neurochirurgie, Freiburg, Deutschland
  • Evangelos Kogias - Universitätsklinikum Freiburg, Klinik für Neurochirurgie, Freiburg, Deutschland
  • Dirk-Matthias Altenmüller - Universitätsklinikum Freiburg, Epilepsiezentrum, Freiburg, Deutschland
  • Karl Egger - Universitätsklinikum Freiburg, Abteilung Neuroradiologie, Freiburg, Deutschland
  • Volker Coenen - Universitätsklinikum Freiburg, Abteilung Stereotaktische und Funktionelle Neurochirurgie, Freiburg, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 70. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Skandinavischen Gesellschaft für Neurochirurgie. Würzburg, 12.-15.05.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocV237

doi: 10.3205/19dgnc256, urn:nbn:de:0183-19dgnc2567

Veröffentlicht: 8. Mai 2019

© 2019 Reinacher et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Evaluation of a technique combining stereotaxy with sophisticated three-dimensional (3D) planning software and to calculate accuracy of electrode placement as well as accuracy predictors.

Methods: Retrospective study of 15 consecutive patients that received depth electrodes using a stereotactic frame (Leksell G frame, Elekta, Stockholm, Sweden), after planning with Elements (Brainlab, München, Germany). For each electrode, we calculated the entry point error (EPE) as lateral deviation and target point error (TPE) both as lateral deviation and euclidian distance. Multivariate regression analysis and computation of 95% confidence intervals using the bootstrap method were applied for statistical analysis and evaluation of accuracy predictors.

Results: Fifteen patients received 136 depth electrodes (average 9; range 6–13). Eleven patients received unilateral (8 right/3 left) and 4 bilateral electrodes. Overall there were 40 left-sided and 96 right-sided electrodes. There were 12 amygdalar, 15 hippocampal, 9 parahippocampal, 16 insular, and 84 lobar electrodes (37 frontal, 30 temporal, 2 occipital, 3 parietal, 9 temporo-occipital and 3 temporo-parietal). There was no mortality. One patient had a small intracerebral hematoma in the occipital lobe at the entry point with a volume of 3,42ml. The patient was asymptomatic. Rate: 1/15 patients (6,7%); 1 in 136 electrodes (risk of hemorrhagic complication per electrode: 0,7%).

The mean EPE, lateral TPE and euclidian TPE were 0.6 0.5 mm, 1.10.7 mm and 1.5 0.8 mm respectively. Order of implantation (1–6 vs. >6) is predictor for the euclidian TPE and length of electrode predictor for the lateral TPE. Localization of electrode generally did not correlate to error but insular electrodes were significantly less accurate than lobar ones.

Conclusion: With respect to the implantation of multiple depth electrodes, the need for better and sophisticated visualization does not preclude the accuracy of a frame-based stereotaxy system. Safe distance, as calculated by mean error and standard deviation, reflects the accuracy and precision of a SEEG implantation method and should be regarded as the best safety indicator. Accuracy predictors should be considered for the improvement of safety in SEEG methods.

Figure 1 [Fig. 1]