gms | German Medical Science

69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

03.06. - 06.06.2018, Münster

Assessing precision and active vibration dampened positioning of microscopic surgeon-controlled robotics functions combining optical and digital visualization modalities

Meeting Abstract

Suche in Medline nach

  • André Sagerer - Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, Dresden, Deutschland
  • Gabriele Schackert - Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, Dresden, Deutschland
  • Matthias Kirsch - Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, Dresden, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie. Münster, 03.-06.06.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. DocP048

doi: 10.3205/18dgnc389, urn:nbn:de:0183-18dgnc3891

Veröffentlicht: 18. Juni 2018

© 2018 Sagerer et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Manual hassle is still an emerging problem during cranial surgery. New generation of surgical microscopes aim to gain precise and intelligent positioning, while minimizing collateral system vibrations. Therefore, PointLock and PositionMemory functionality was developed. Here, we analyzed precise positioning of new robotic functionality with ZEISS KINEVO 900 (Carl Zeiss, Oberkochen, Germany).

Methods: The surgical microscope head was moved in different angles to a reference point (0°) at -45°, -30°, 30°, 45° in non-draped and draped mode and measured deviating distance (millimeter) to previously marked reference point by checking focus points. We used targets on planar (sheet of paper), uneven (skull model) and curved surfaces (table tennis ball). We further moved microscope towards and laterally to the examiner and automatically recalled position. Again, measurements were performed in non-draped and draped mode. For interference weight (1 kg) was adjusted to the observer tube.

Results: Focused on planar surface (non-draped), mean ± SD (mm) was 11,5 ± 4,0 (-45°), 3,6 ± 1,3 (-30°), 3,7 ± 1,2 (30°) and 7,3 ± 2,8 (45°), respectively. Fully draped, mean deviation was 10,3 ± 4,5 (-45°), 4,2 ± 1,5 (-30°), 6,1 ± 3,0 (30°) and 9,8 ± 3,7 (45°). After weight interference, mean value was overall not-significantly although slightly increased.

Focused on uneven surface (non-draped), mean deviation was 12,7 ± 1,6 (-45°), 5,2 ± 1,5 (-30°), 4,1 ± 2,3 (30°) and 8,7 ± 3,9 (45°). Fully draped, mean was 8,3 ± 2,2 (-45°), 2,7 ± 1,3 (-30°), 4,6 ± 1,8 (30°) and 9,6 ± 2,4 (45°). Again, weight interference increased mean value only slightly. Under non-draped and focusing on curved conditions mean was 13,3 ± 3,1 (-45°), 8,0 ± 1,6 (-30°), 6,5 ± 1,5 (30°) and 11,1 ± 3,2 (45°).

For testing PositionMemory mean deviation on planar surface was 1,6 ± 1,2 (forward-facing) and 2,0 ± 1,1 (left-facing). Fully draped, mean was 1,3 ± 0,5 (forward-facing) and 2,3 ± 0,8 (left-facing). Weight interference however increased mean up to 5,9 ± 0,9 (forward-facing) and 6,2 ± 1,8 (left-facing).

Conclusion: Our data demonstrate the high precision of ZEISS KINEVO 900. It was shown that accuracy of both PointLock and PositionMemory depended on absolute angle and focusing direction. Therefore, further studies are necessary to define the potential of microscopic Surgeon-Controlled Robotics functions under extended microsurgical conditions.