gms | German Medical Science

69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

03.06. - 06.06.2018, Münster

Intra-operative perfusion measurement using IR video: challenges and approaches

Meeting Abstract

  • Igor Fischer - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland
  • Bernd Turowski - Heinrich-Heine-Universität, Universitätsklinikum, Neuroradiologie, Düsseldorf, Deutschland
  • Jan Frederick Cornelius - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland
  • Philipp Slotty - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland
  • Athanasios Petridis - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland
  • Hans-Jakob Steiger - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland
  • Marcel Alexander Kamp - Heinrich-Heine-Universität, Universitätsklinikum, Klinik für Neurochirurgie, Düsseldorf, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie. Münster, 03.-06.06.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. DocV310

doi: 10.3205/18dgnc330, urn:nbn:de:0183-18dgnc3306

Veröffentlicht: 18. Juni 2018

© 2018 Fischer et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: Intra-operative indocyanine green (ICG) angiography provides qualitative information on cerebral blood perfusion. For quantitative feedback, a number of challenges have to be resolved. The envisioned application is providing a near-real time feedback to the surgeon.

Methods: Video sequences of 25 ICG angiographies (21 patients), recorded over a period of eight years, were evaluated. The videos were analyzed in batch, using dedicated computer software in Java and Python, developed by the first author. The core of the computation is deconvolution of the arterial input function (AIF) from the observed tracer intensity, as in CT and MRT perfusion measurement.

For each pixel in the video, the software computes the mean transit time (MTT), time to maximum of the residue function (Tmax), regional cerebral blood flow (rCBF) and volume (rCBV). The computed values are visualized as static, color-coded images. In an intermediary step, the software also shows a graph of the computed residue function for healthy tissue.

The results were evaluated for plausibility by comparing the computed intermediary and final values with values from literature.

Results: The AIF can only be observed through vessel walls, which is an inherent challenge of the method. This was resolved by subtracting the intensity curve of healthy tissue from the arterial curve. All videos suffered from inhomogeneous illumination and had to be equalized using healthy tissue curves from different parts of the brain as references. Vibrations of the camera were also an issue in all videos, and six also suffered from strong brain pulsation. Both were compensated for using phase correlation and piece-wise affine transform, albeit in three cases without success. Due to higher time and space resolution than CT and MRT, oscillations in the deconvoluted residue function were also stronger and had to be smoothed out using a combination of sliding window and adaptive filtering. In 14 videos at least one arterial curve reached saturation (i.e. max. white value). This was mitigated by averaging over multiple curves.

A visualization of Tmax for a patient is shown in the Figure1 [Fig. 1]. Healthy tissue and arteries are bright, veins and areas with delayed flow dark.

Conclusion: Quantifying cerebral perfusion from ICG angiography is possible, but requires a skilled software operator to fine-tune the parameters. The biggest challenge for near-real time application is image stabilization, which takes 5-10 minutes per video.