gms | German Medical Science

69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

03.06. - 06.06.2018, Münster

Neurophysiology-driven parameter selection in DTI tractography

Meeting Abstract

  • Kathrin Machetanz - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland
  • Leonidas Trakolis - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland
  • Maria Teresa Leão - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland
  • Marina Liebsch - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland
  • Marcos Tatagiba - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland
  • Georgios Naros - Universitätsklinikum Tübingen, Klinik für Neurochirurgie, Tübingen, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 69. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Mexikanischen und Kolumbianischen Gesellschaft für Neurochirurgie. Münster, 03.-06.06.2018. Düsseldorf: German Medical Science GMS Publishing House; 2018. DocV066

doi: 10.3205/18dgnc067, urn:nbn:de:0183-18dgnc0679

Veröffentlicht: 18. Juni 2018

© 2018 Machetanz et al.
Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.


Gliederung

Text

Objective: There is an increasing interest in preoperative diffusion tensor imaging fiber tracking (DTI-FT) to preserve function during operations in motor eloquent brain regions. However, DTI tractography is challenged by inherent presumptions (e.g. fractional anisotropy, angulation, fiber length thresholds, etc.) and the missing ground-truth. Both widely used approaches to these problems (i.e. deterministic and probabilistic DTI) have advantages and disadvantages. In the present study, we suggest a novel and completely neurophysiology-driven approach to DTI-FT of the corticospinal tract (CST) integrating both imaging and neurophysiological information.

Methods: After preoperative navigated transcranial magnetic stimulation (nTMS) of both the healthy and the affected hemisphere, individual DTI-FT was performed from each nTMS stimulation point applying over 500 combinations of DTI parameters followed by a multidimensional mathematical modelling of this empirical data. Finally, optimal DTI parameters were determined by the relationship between DTI-FT (i.e. number of fibers, NoF) and nTMS (i.e. amplitudes of motor-evoked potentials, MEP) results. This neurophysiological DTI-FT was compared to anatomical imaging as well as to deterministic and probabilistic DTI in 14 patients with motor-eloquent lesions.

Results: Automated neurophysiological selection of optimized DTI parameters was possible in all patients. There was a high goodness-of-fit for the mathematical model for both healthy and affected hemisphere (r²=0.7756 ± 0.13 and r²=0.9194 ± 0.07, respectively). Automated parameter selection resulted in a good correlation between DTI-FT and nTMS results for both hemispheres (r=0.4607 ± 0.17 and r=0.6661 ± 0.17, respectively). Both, deterministic and probabilistic DTI showed less consistency to neurophysiology.

Conclusion: The present study evaluates a novel approach to extract objective DTI-FT-parameters completely based on neurophysiological data. The findings suggest that this method may improve specificity and sensitivity of DTI-FT and, thus, overcome disadvantages the current approaches.