gms | German Medical Science

130. Kongress der Deutschen Gesellschaft für Chirurgie

Deutsche Gesellschaft für Chirurgie

30.04. - 03.05.2013, München

Assessment of a novel biomechanical model for distal radius fractures

Meeting Abstract

  • Sebastian Baumbach - Chirurgische Klinik und Poliklinik, LMU, Unfallchirurgie, München
  • Enrico Dall'Ara - Vienna University of Technology, Institute of Lightweight Design and Structural Biomechanics, Vienna
  • Patrick Weninger - Lorenz Boehler Trauma Hospital, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Cluster for Tissue Regenerati, Vienna
  • Anna Antoni - Lorenz Boehler Trauma Hospital, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Cluster for Tissue Regenerati, Vienna
  • Hannes Traxler - Medizinische Universität Wien, Institut für Anatomie, Vienna
  • Philippe Zysset - Vienna University of Technology, Institute of Lightweight Design and Structural Biomechanics, Vienna

Deutsche Gesellschaft für Chirurgie. 130. Kongress der Deutschen Gesellschaft für Chirurgie. München, 30.04.-03.05.2013. Düsseldorf: German Medical Science GMS Publishing House; 2013. Doc13dgch380

doi: 10.3205/13dgch380, urn:nbn:de:0183-13dgch3801

Veröffentlicht: 26. April 2013

© 2013 Baumbach et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Introduction: Distal radius fractures (DRF) are one of the most common fractures and often treated by plate osteosynthesis, which are validated through biomechanical tests. A recent publication challenges the current standard biomechanical fracture model. The aim of the study was to develop a new model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold-standard.

Material and methods: Polyaxial angle-stable volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh frozen radii. The osteotomy location (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold-standard: 10 mm wedge 20 mm proximal to the articular surface) was alternated within each pair. Each specimen was tested in cyclic axial compression (increasing load by 100N per cycle) until failure or -3 mm displacement. Parameters assessed were displacement, work and stiffness calculated for each cycle and ultimate load.

Results: 7 female and 3 male pairs of radii aged 74.3 ± 9.0 years were tested. In most cases (7/10) the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads, which became significant at 700N. The new model showed greater displacement (p=0,044), more dissipated work (p=0.025) and lower stiffness values p=(0.009). The average final loads resisted were significantly lower in the novel model (860N ± 232N vs. 1250N ± 341N; p=0,001).

Conclusion: The herein introduced novel biomechanical fracture model for DRF better mimics the in-vivo fracture location and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold-standard.