gms | German Medical Science

44. Jahrestagung der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen e. V. (DGPRÄC), 18. Jahrestagung der Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen e. V. (VDÄPC)

12.09. - 14.09.2013, Münster

Optimizing biomaterials for tissue engineeringbone like tissue using human mesenchymal stem cells

Meeting Abstract

  • presenting/speaker Christian Weinand - Harvard University, Laboratory for Tissue Engineering and Organ Fabrication, Boston, Vereinigte Staaten von Amerika
  • Craig M. Neville - Harvard University, Laboratory for Tissue Engineering and Organ Fabrication, Boston, Vereinigte Staaten von Amerika
  • Eli Weinberg - Massachusetts Institute of Technology (MIT), Cambridge, Vereinigte Staaten von Amerika
  • Yasuhiko Tabata - Institute for Frontier Medical Sciences, Department of Biomaterials, Field of Tissue Engineering, Kyoto, Japan
  • Gerald Spilker - Universität Witten-Herdecke, Klinikum Köln-Merheim, Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Schwerverbranntenzentrum, Köln-Merheim, Deutschland
  • Joseph P. Vacanti - Harvard University, Laboratory for Tissue Engineering and Organ Fabrication, Boston, Vereinigte Staaten von Amerika

Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen. Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen. 44. Jahrestagung der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC), 17. Jahrestagung der Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen (VDÄPC). Münster, 12.-14.09.2013. Düsseldorf: German Medical Science GMS Publishing House; 2013. DocP 100

doi: 10.3205/13dgpraec201, urn:nbn:de:0183-13dgpraec2015

Published: September 10, 2013

© 2013 Weinand et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Introduction: Trabecular bone is needed in reconstruction after trauma, tumor resection or congenital defects. Autologous grafting causes donor site morbidity and does not meet anatomical needs. Various biomaterials in combination with mesenchymal stem cells can be customized in shape for tissue engineering bone. They are based on osteoinductive and osteoconductive β-Tricalciumphosphate (β-TCP) or Hydroxylapatite. However, these basic materials do not withstand mechanical load. Recently combination of materials improved mechanical stability.

Aim: Evaluate the combination of osteoinductive and osteoconductive materials to tissue engineer bone like tissue using human mesenchymal stem cells.

Materials and Methods: β-TCP was mixed with 5 different hydrogels (Gelatin, Collagen I, Fibrin glue, Alginate, Pluronics) and 3 dimensionally printed. Mesenchymal stem cells from human femoral heads were expanded and seeded under dynamic oscillating conditions onto the scaffolds. Acellular controls were made of TCP scaffolds and gels. Constructs were harvested after 6 weeks and evaluated histologically, radiologically, biomechanically and expression of bone specific proteins via RT-PCR. Native human bone served as control.

Results: Collagen I, Fibrin glue and Gelatin β-TCP specimens supported bone formation best histologically, radiologically, biomechanically and expressed the highest levels of bone specific proteins. Biomechanical stiffness and radiological densities reached the ones of human bone. Alginate constructs showed the highest biomechanical stiffness. Control samples had initial higher strength, but had lower biomechanical resistance. Constructs comprised of Pluronics did not support bone formation.

Discussion: Although the other evaluated materials showed good results, combining Collagen I based hydrogels, β-TCP and MSCs had the best results. Tissue engineered polymer constructs combining 3-D printed Collagen/TCP scaffolds and MSCs appear to be a promising substitute for human bone reconstruction.