gms | German Medical Science

44. Jahrestagung der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen e. V. (DGPRÄC), 18. Jahrestagung der Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen e. V. (VDÄPC)

12.09. - 14.09.2013, Münster

Cell-free Carrier System for Localised Delivery of Peripheral Blood Cell: Derived Engineered Factor Signaling – Towards Development of a One-Step Device for Autologous Angiogenic Therapy

Meeting Abstract

  • presenting/speaker Ektoras Hadjipanayi - TUM Klinikum Rechts der Isar, Experimentelle Plastische Chirurgie, München, Deutschland; Klinikum Bogenhausen, Plastische & Handchirurgie, München, Deutschland
  • Anna-Theresa Bauer - TUM Klinikum Rechts der Isar, Experimentelle Plastische Chirurgie, München, Deutschland
  • Philipp Moog - TUM Klinikum Rechts der Isar, Experimentelle Plastische Chirurgie, München, Deutschland
  • Milomir Ninkovic - Klinikum Bogenhausen, Plastische & Handchirurgie, München, Deutschland
  • Hans-Günther Machens - TUM Klinikum Rechts der Isar, Experimentelle Plastische Chirurgie, München, Deutschland
  • Arndt Schilling - TUM Klinikum Rechts der Isar, Experimentelle Plastische Chirurgie, München, Deutschland

Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen. Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen. 44. Jahrestagung der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC), 17. Jahrestagung der Vereinigung der Deutschen Ästhetisch-Plastischen Chirurgen (VDÄPC). Münster, 12.-14.09.2013. Düsseldorf: German Medical Science GMS Publishing House; 2013. DocP 95

doi: 10.3205/13dgpraec196, urn:nbn:de:0183-13dgpraec1963

Published: September 10, 2013

© 2013 Hadjipanayi et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Spatiotemporally-controlled delivery of hypoxia-induced angiogenic factor mixtures has been identified by this group as a promising strategy for overcoming the limited ability of chronically ischaemic tissues to generate adaptive angiogenesis. We previously developed an implantable, as well as an injectable system for delivering fibroblast-produced factors in vivo. Here, we identify peripheral blood cells (PBCs) as the ideal factor-providing candidates, due to their autologous nature, ease of harvest and ample supply, and investigate wound-simulating biochemical and biophysical environmental parameters that can be controlled to optimize PBC angiogenic activity. It was found that hypoxia (3% O2) significantly affected the expression of a range of angiogenesis-related factors including VEGF, Angiogenin and Thrombospondin-1, relative to the normoxic baseline. While all three factors underwent down-regulation over time under hypoxia, there was significant variation in the temporal profile of their expression. VEGF expression was also found to be dependent on cell-scaffold material composition, with fibrin stimulating production the most, followed by collagen and polystyrene. Cell-scaffold matrix stiffness was an additional important factor, as shown by higher VEGF protein levels when PBCs were cultured on stiff vs. compliant collagen hydrogel scaffolds. Engineered PBC-derived factor mixtures could be harvested within cell-free gel and microsphere carriers. The angiogenic effectiveness of factor-loaded carriers could be demonstrated by the ability of their releasates to induce endothelial cell tubule formation and directional migration in in vitro Matrigel assays, and microvessel sprouting in the aortic ring assay. To aid the clinical translation of this approach, we propose a device design that integrates this system, and enables one-step harvesting and delivering of angiogenic factor protein mixtures from autologous peripheral blood. This will facilitate the controlled release of these factors both at the bed-side, as an angiogenic therapy in wounds and peripheral ischaemic tissue, as well as pre-, intra- and post-operatively as angiogenic support for central ischaemic tissue, grafts, flaps and tissue engineered implants. (Figure 1 [Fig. 1])