gms | German Medical Science

Kongress Medizin und Gesellschaft 2007

17. bis 21.09.2007, Augsburg

Workshop: Applying quantitative sensitivity analysis to epidemiologic data

Meeting Abstract

Suche in Medline nach

  • Timothy Lash - Department of Epidemiology, Boston University School of Public Health, Boston

Kongress Medizin und Gesellschaft 2007. Augsburg, 17.-21.09.2007. Düsseldorf: German Medical Science GMS Publishing House; 2007. Doc07gmds861

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/gmds2007/07gmds861.shtml

Veröffentlicht: 6. September 2007

© 2007 Lash.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Audience: Epidemiologists familiar with threats to validity (selection bias, misclassification, and confounding), basic algebra, and statistical computing.

Description: Observational epidemiologic studies yield estimates of effect that differ from the true effect because of random error and systematic error. Epidemiologists design studies and analyses to minimize both sources of error. When presenting results, epidemiologists conventionally use statistics to quantify the impact of random error on estimates of effect, but only qualitatively describe residual systematic error (uncontrolled bias). Sensitivity analysis provides one method of quantifying residual systematic error. Participants in this workshop will learn how to use simple and probabilistic sensitivity analyses to account for systematic as well as random error in their estimates of effect.

The interactive workshop will present topics that address the objectives described below. After each segment, participants will interactively solve problems in a notebook that illustrate the preceding segment’s objective. All of the presentation materials and the problems will be provided in the notebook, as will a bibliography of primary literature citations to the methods literature.

Participants should expect to gain new skills, as the emphasis of the workshop will be on the implementation and conduct of sensitivity analysis, rather than statistical theory.

Objectives: Participants who complete the workshop will be able to:

1.
Determine settings in which quantitative estimates of uncertainty due to systematic error ought to be calculated, describe methods to estimate that systematic error, and compare the advantages and disadvantages of these methods.
2.
Quantify error arising from confounding, from selection bias, or from misclassification of exposure, disease, or a covariate, using simple sensitivity analysis.
3.
Use multidimensional analyses to calculate ranges of uncertainty in estimates of effect.
4.
Use Monte Carlo methods of sensitivity analysis that (a) impute data to calculate a distribution of estimates of effect, or (b) apply bias parameters to the original estimates of effect.