gms | German Medical Science

51. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (gmds)

10. - 14.09.2006, Leipzig

A General Approach for Power Calculations for the Haseman-Elston Method

Meeting Abstract

Suche in Medline nach

  • Oliver Hädicke - Universität zu Lübeck, Lübeck
  • Heping Zhang - Yale University School of Medicine, New Haven
  • Andreas Ziegler - Universität zu Lübeck, Lübeck

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (gmds). 51. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. Leipzig, 10.-14.09.2006. Düsseldorf, Köln: German Medical Science; 2006. Doc06gmds227

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter:

Veröffentlicht: 1. September 2006

© 2006 Hädicke et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen ( Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.



To unravel the genetic basis of complex genetic disorders, intermediate quantitative traits are often analyzed in practice instead of the clinically relevant outcome [1]. In family studies, these are often investigated with a sample of nuclear families, consisting in at least two offspring and their parents. Risch and Zhang [2] proposed a new approach for sample size and power calculations with the Haseman-Elston method [3] as tool for analysis. They started off with the simple Falconer model [4]

xit = μ + git + eit,

where xit is the trait value of offspring t, t = 1, 2, in family i, i = 1, …, n. μ is the general mean, git is the genetic effect attributed to the diallelic major locus. Polygenic and environmental effects are absorbed in the error term eit. The genetic effect g takes on values a, d, and –a, when the offspring is homozygous for the high allele, heterozygous, and homozygous for the low alleles, respectively. The Haseman-Elston method then regresses the sib-pairs squared trait difference on the proportion τi of alleles shared identical by descent (IBD) and the probability z1i for sib-pair i sharing one allele IBD:

yi = (xi1 – xi2)2 = α + β τi + γ z1i + εi

Haseman and Elston [3] have shown that the slope coefficient β is given by [3] β = -2(1-2θ)2 σg 2, where θ is the recombination fraction between the marker and the trait locus, and σg 2 is the genetic variance attributable to the trait locus. Formulae for σg 2 can be found elsewhere [see, e.g., [1]].

For power and sample size calculations, Risch and Zhang [2] considered an additive genetic model, i.e., γ = 0, and a completely informative genetic marker for the null hypothesis H0: σg 2 = 0 against the one-sided alternative H1: σg 2 > 0.

In this presentation, we firstly demonstrate in Monte-Carlo simulation studies that the power calculated by Risch and Zhang do not match their theoretical levels. We argue that the hypothesis σg 2 = 0 used by Risch and Zhang is inadequate. We next develop new formulae for power and sample size calculations for the Haseman-Elston method based on H0: θ = ½ versus H0: θ < ½. Finally, we illustrate the validity of our new formulae in Monte-Carlo simulation studies.

In conclusion, power and sample size calculations for the Haseman-Elston method should not be performed with the formulae developed by Risch and Zhang [2]. For this purpose, one should either utilize the approach proposed by Amos et al. [5] or our new method. For this, it is important to stress the limitations of these methods. Both are restricted to a single diallelic major trait locus. However, while Amos et al. assume absence of polygenic components and/or shared environmental effects, our approach is based on the existence of a completely informative genetic marker. We are convinced that the latter limitation is less crucial because today’s genome-wide linkage studies utilizing 10,000 or more single nucleotide polymorphisms lead to almost complete marker information at any chromosomal position.


Ziegler A, König IR. A Statistical Approach to Genetic Epidemiology. Heidelberg: Wiley-VCH; 2006.
Risch N, Zhang H. Extreme Discordant Sib Pairs for mapping Quantitative Trait Loci in Humans. Science. 1995; 268:1584-1589.
Haseman JK, Elston RC. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972; 2: 3-19.
Falconer D. Einführung in die quantitative Genetik. Stuttgart: UTB; 1989.
Amos CI, Elston RC. Robust methods fort he detection of genetic linkage for quantitative data from pedigrees. Genet Epidemiol. 1989; 6:349-360.