gms | German Medical Science

51. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e. V. (gmds)

10. - 14.09.2006, Leipzig

A New Powerful Study Design for Linkage Analysis of Quantitative Traits: The Single Parental Proband Sib-Pair Study Design

Meeting Abstract

  • Oliver Hädicke - Universität zu Lübeck, Lübeck
  • Susanna Moskau-Hartmann - Universitätsklinikum Bonn, Bonn
  • Thomas Klockgether - Universitätsklinikum Bonn, Bonn
  • Andreas Ziegler - Universität zu Lübeck, Lübeck

Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (gmds). 51. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. Leipzig, 10.-14.09.2006. Düsseldorf, Köln: German Medical Science; 2006. Doc06gmds224

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/gmds2006/06gmds131.shtml

Veröffentlicht: 1. September 2006

© 2006 Hädicke et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

To unravel the basis of complex genetic diseases, a sample of nuclear families consisting in sib-pairs is often ascertained. Three different ascertainment schemes have been contradictorily discussed regarding their power, cost efficiency, and interpretability [for a detailed discussion see, e.g., [1]. The first approach is to draw sib pairs randomly from the general population (random sib pair – RSP). Secondly, sib pairs may be ascertained via one sibling that has an extreme value regarding the trait of interest (single proband sib pair – SPSP). The SPSP approach has greater statistical power for a broad variety of single locus models than the RSP approach. Thirdly, the double proband sib-pair design, also termed extreme sib-pair (ESP) design may be employed. Here, both siblings have extreme trait values from the top or the bottom tail of the distribution. In the latter two study designs, phenotypic values of siblings are used for selecting nuclear families.

An alternative approach is the following. A clinically relevant expression of a phenotype is often observed in individuals at higher age only, while an intermediate quantitative trait can also be observed early. The older subjects can easily be recruited from a clinic, be the starting point for an ascertainment of a nuclear family, and serve as parents within the nuclear family. This results in the single parental proband sib-pair (SPPSP) design. To our knowledge, this study design has not been theoretically investigated. It has, however, been applied at least twice; in both cases we are aware of for the investigation of the intima media thickness [2], [3].

In this presentation, we firstly derive the properties of the SPPSP design with the Haseman-Elston method [4] as method for statistical analysis for a major locus model. Interpretation of the estimated regression parameter is intuitive and analogous to the Haseman-Elston method for both the RSP design and the SPSP design. Second, we perform analytical power and sample size calculations for the SPPSP design and show that this study design is more powerful than the RSP approach in all investigated situations. Third, we validate the analytically calculated sample sizes in a Monte-Carlo simulation study.

The SPPSP study design is a feasible approach with several advantages. It yields up to 10-fold reduced sample size compared with the RSP design. The Haseman-Elston regression approach or variance component models can be used for analytical power and sample size calculations. Practical advantages and disadvantages are analogous to that of the SPSP study design. However, especially for late-onset diseases it might be superior to other study designs.


References

1.
Ziegler A, König IR. A Statistical Approach to Genetic Epidemiology. Heidelberg: Wiley-VCH; 2006.
2.
Moskau S, Golla A, Grothe C, Boes M, Pohl C, Klockgether T. Heritability of carotid artery atherosclerotic lesions: an ultrasound study in 154 families. Stroke. 2005; 36: 5-8.
3.
Wang D, Yang H, Quinones MJ, Bulnes-Enriquez I, Jimenez X, De La Rosa R, Modilevsky T, Yu K, Li Y, Taylor KD, Hsueh WA, Hodis HN, Rotter JI. A genome-wide scan for carotid artery intima-media thickness: the Mexican-American Coronary Artery Disease family study. Stroke. 2005; 36:540-5.
4.
Haseman JK, Elston RC. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972; 2: 3-19.