gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

Comparison of numerical simulated and experimental dye-washout studies in human aneurysms

Vergleich von numerisch simulierten und experimentellen Farbauswaschstudien an menschlichen zerebralen Aneurysmen

Meeting Abstract

  • corresponding author A. Spuler - Neurochirurgische Klinik, Helios Klinikum Berlin
  • L. Goubergrits - Labor für Biofluidmechanik, Humboldt-Universität Berlin
  • C. Petz - Abteilung für wissenschaftliche Visualisierung, Konrad-Zuse-Zentrum Berlin
  • D. Stalling - Abteilung für wissenschaftliche Visualisierung, Konrad-Zuse-Zentrum Berlin
  • K. Affeld - Labor für Biofluidmechanik, Humboldt-Universität Berlin
  • J. C. Kiwit - Neurochirurgische Klinik, Helios Klinikum Berlin

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. DocP072

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2005/05dgnc0340.shtml

Veröffentlicht: 4. Mai 2005

© 2005 Spuler et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielf&aauml;ltigt, verbreitet und &oauml;ffentlich zug&aauml;nglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective

Biofluidmechanical properties such as intraaneurysmal blood pressure, blood flow velocity and wall shear stress influence significantly the development and risk of rupture of cerebral aneurysms. Flow visualization makes the description of clinically important biofluidmechanical findingspossible, that would otherwise not be accessible to visualization. Flow visualization in realistic models of cerebral aneurysms is realized by means of the dye washout method. This method is so expensive that it cannot be applied routinely to real aneurysms. Therefore, we compared numerically simulated dye studies with the dye washout experiments performed in the corresponding silicon models of aneurysms.

Methods

Raw data of human cerebral aneurysms were created by means of conventional CT-angiography or 3D rotational angiography. Three-dimensional geometrical computational models of the aneurysms with inflow and outflow branches were derived. These models were transformed to three-dimensional grids which we used to perform numeric calculations of the bio-fluidmechanical parameters and of dye washout experiments. For the experimental study, a threefold upscaled silicon aneurysmal model was developd. Dye washout experiments were performed using this silicon model.

Results

The calculated spatial distribution of intraaneurysmal blood pressure, flow velocity and wall shear stress is shown for the inflow and outflow branches, and the aneurysm itself. The numerically simulated dye washout corresponds well to dye washout dynamics seen in the silicon models.

Conclusions

Numeric simulation of biofluidmechanical properties of cerebral aneurysms augment our understanding of their biofluidmechanical and clinical behaviour. Numeric simulation can be validated with three-dimensional silicone models. Numeric simulation and the corresponding silicone models allow testing of various therapeutic interventions such as clipping, coiling and stenting.