gms | German Medical Science

56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e. V. (DGNC)
3èmes journées françaises de Neurochirurgie (SFNC)

Deutsche Gesellschaft für Neurochirurgie e. V.
Société Française de Neurochirurgie

07. bis 11.05.2005, Strasbourg

Ultrasonic radio-frequency spectrum analysis of the brain: a possible tool for intraoperative tissue characterization

Spektralanalyse der Hochfrequenzechodaten von Hirngewebe zur intraoperativen Gewebetypisierung

Meeting Abstract

  • corresponding author M. Strowitzki - Universitätskliniken des Saarlandes, Neurochirurgische Klinik, Homburg/Saar
  • K. V. Jenderka - Physikalisch-Technische Bundesanstalt, Braunschweig
  • S. Brand - Ryerson University, Toronto/CDN
  • R. Ketter - Universitätskliniken des Saarlandes, Neurochirurgische Klinik, Homburg/Saar
  • W. I. Steudel - Universitätskliniken des Saarlandes, Neurochirurgische Klinik, Homburg/Saar

Deutsche Gesellschaft für Neurochirurgie. Société Française de Neurochirurgie. 56. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC), 3èmes journées françaises de Neurochirurgie (SFNC). Strasbourg, 07.-11.05.2005. Düsseldorf, Köln: German Medical Science; 2005. Doc11.05.-16.01

Die elektronische Version dieses Artikels ist vollständig und ist verfügbar unter: http://www.egms.de/de/meetings/dgnc2005/05dgnc0256.shtml

Veröffentlicht: 4. Mai 2005

© 2005 Strowitzki et al.
Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.


Gliederung

Text

Objective

Commercially available scanners are modifying the ultrasound signals in order to create uniformly bright pictures using the envelope of the radio-frequency signals only. We present a method and first results of quantitative analysis of the echogenic properties of brain tissue that may lead to intraoperative tissue characterization.

Methods

A commercially available ultrasound scanner (Hitachi CS 9600) was modified in order to obtain the pure radio-frequency signals without any preprocessing. Data were stored on a standard PC. Diffraction correction was done using tissue mimicking reference phantoms and implemented in the spectral analysis. Analytic emphasis was put on frequency dependent attenuation and relative backscatter coefficient using a self-developed routine.

Results

Quantitative data could be obtained from normal parenchyma (n=18), edematous tissue (n=8) and meningiomas (n=12). There was a quantifiable loss of attenuation in meningioma tissue (2.268 dB/cm) compared to edematous tissue (3,065 dB/cm, p=0,014) and normal brain parenchyma (3.971 dB/cm, p=0,0002). Values of relative backscatter coefficient did not show significant differences, possibly due to the attenuation of the overlying tissue.

Conclusions

A method is presented for system independent ultrasonic radio-frequency spectrum analysis of brain tissue. Quantitative determination of the echogenic properties shows significant differences between meningioma and brain tissue and thus may lead to intraoperative tissue characterization, a goal that is not yet reached mainly due to inhomogeneities and sample volume.