gms | German Medical Science

27th German Cancer Congress Berlin 2006

German Cancer Society (Frankfurt/M.)

22. - 26.03.2006, Berlin

Construction of gene expression networks by RNA interference in human cells

Meeting Abstract

  • corresponding author presenting/speaker Mark Fellmann - Deutsches Krebsforschungszentrum Heidelberg, Deutschland
  • Ruth Wellenreuther - Deutsches Krebsforschungszentrum Heidelberg
  • Ruprecht Kuner - Deutsches Krebsforschungszentrum Heidelberg
  • Andreas Buness - Deutsches Krebsforschungszentrum Heidelberg
  • Achim Tresch - Deutsches Krebsforschungszentrum Heidelberg
  • Tim Beissbarth - Deutsches Krebsforschungszentrum Heidelberg
  • Holger Sültmann - Deutsches Krebsforschungszentrum Heidelberg

27. Deutscher Krebskongress. Berlin, 22.-26.03.2006. Düsseldorf, Köln: German Medical Science; 2006. DocPO071

The electronic version of this article is the complete one and can be found online at: http://www.egms.de/en/meetings/dkk2006/06dkk181.shtml

Published: March 20, 2006

© 2006 Fellmann et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.


Outline

Text

Breast cancer is one of the most common malignant diseases in females. Tumors can be divided into estrogen-receptor positive and estrogen-receptor negative tissues which show distinct clinical behaviours. To understand the regulatory processes of gene expression networks in cancer diseases, single genes with relevance in cancer are silenced using chemically synthesised siRNA. The main focus of this project is on the analysis of estrogen receptor (ESR) signalling in breast cancer, using different breast cell-lines (ESR-positive and negative) as model organisms. To establish the experimental conditions, the TP53 gene was used: Human cells were grown for 24h before transfection in 96 well-plates and transfected with two different siRNA against TP53 using the HiPerFect transfection reagent. The transfection reaction was stopped after 42h of incubation by lysing the cells. RNA was extracted, and the silencing efficiency of TP53 was measured using qRT-PCR. The RNA samples with best silencing efficiency were amplified and used for hybridisation on human whole genome cDNA microarrays containing 37,500 clones (RZPD Unigene Set 3.1). The gene expression patterns were used to analyse the downstream effects of the cellular perturbance. By using the microarray data, network models are designed to account the hierarchial organisation of transcriptional regulation among cancer-relevant genes related to the estrogen-receptor pathway in breast cancer. In the future we will set up a screening-procedure for gene silencing in breast-cancer related cell lines (MCF7, SKBR3, BT474) to be able to construct hierarchial networks. By the support of our bioinformatic resource, we will try to calculated regulatory dependencies among the subset of silenced genes in order to find unknown interactions between cancer relevant genes.